Please wait a minute...
材料导报  2019, Vol. 33 Issue (9): 1462-1465    https://doi.org/10.11896/cldb.18050104
  材料与可持续发展(二)——材料绿色制作与加工* |
电火花沉积AlCoCrFeNi高熵合金涂层的高速摩擦磨损性能
郭策安1,2, 赵宗科1, 赵爽1, 卢凤生3, 赵博远4, 张健1
1 沈阳理工大学装备工程学院,沈阳 110159;
2 重庆建设工业(集团)有限责任公司,重庆 400054;
3 北方华安工业集团有限公司,齐齐哈尔 161046;
4 中国人民解放军65186部队,铁岭 112609
High-speed Friction and Wear Performance of Electrospark Deposited AlCoCrFeNi High-entropy Alloy Coating
GUO Ce’an1,2, ZHAO Zongke1, ZHAO Shuang1, LU Fengsheng3, ZHAO Boyuan4, ZHANG Jian1
1 School of Equipment Engineering, Shenyang Ligong University, Shenyang 110159;
2 Chongqing Jianshe Industry (Group) LLC, Chongqing 400054;
3 North Huaan Industry Group Co. Ltd., Qiqihar 161046;
4 65186 PLA Troops, Tieling 112609
下载:  全 文 ( PDF ) ( 2140KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过与传统电镀硬Cr涂层比较,研究了电火花沉积AlCoCrFeNi涂层的高速摩擦磨损性能。采用纳米压痕仪和摩擦磨损试验机测试涂层的纳米力学性能和摩擦系数,采用SEM、TEM、EDS和XRD分析涂层的微观结构、成分及相组成。结果表明,AlCoCrFeNi涂层晶粒细小,组织致密无裂纹,由BCC和FCC两相构成;AlCoCrFeNi涂层的硬度较硬Cr涂层的硬度提高了约10%,弹性模量降低了约8%,并具有更高的H/EH3/E2值;与淬火GCr15钢球对磨时,当加载载荷为10 N、往复行程为10 mm、往复速率为800 r/min,AlCoCrFeNi涂层在稳定摩擦阶段的摩擦系数仅为0.25~0.33,而硬Cr涂层为0.65~0.73,AlCoCrFeNi涂层的磨损率较硬Cr涂层的磨损率减小了约41%;硬Cr涂层的磨损机制主要为粘着磨损,失效方式为因脆性裂纹扩展而产生的剥落,而AlCoCrFeNi涂层的磨损机制主要为微切削的磨粒磨损和氧化磨损,摩擦磨损过程中形成的氧化物层提高了涂层的耐磨性能。综上,AlCoCrFeNi涂层较硬Cr涂层具有更好的高速摩擦磨损性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭策安
赵宗科
赵爽
卢凤生
赵博远
张健
关键词:  电火花沉积  高熵合金  AlCoCrFeNi涂层  硬Cr涂层  硬度  弹性模量  高速摩擦磨损    
Abstract: The high-speed friction and wear performance of the electrospark deposited AlCoCrFeNi high entropy alloy coating was investigated by taking conventional electroplated hard Cr coating as comparison. The nanoindentor and friction and wear testing machine were employed to test the nano-mechanical properties and friction coefficient of the coatings. Furthermore, scanning electron microscopy (SEM), transmission electron microscope (TEM), energy dispersive X-ray spectrum (EDS) and X-Ray Diffraction (XRD) were adopted to analyze the microstructure, composition and phase structure of the coatings. The results indicated that the AlCoCrFeNi coating exhibited fine grains and compact structure without cracks and consisted of BCC and FCC phases. There were an approximate 10% increase in hardness, a 8% decrease in elasticity modulus, a higher values of H/E and H3/E2 of the AlCoCrFeNi coating, compared with the hard Cr coating. The steady friction coefficient of the AlCoCrFeNi coating was only 0.25—0.33, while the hard Cr coating was 0.65—0.73, when the quenched GCr15 steel ball was used as one of the friction pair under the load of 10 N, the reciprocating travel of 10 mm and the velocity of 800 r/min. AlCoCrFeNi coating showed about 41% reduction in wear rate compared with hard Cr coating. The wear mechanism of the hard Cr coating is mainly characterized as adhesive wear, and the failure mode can be attributed to spalling caused by crack propagation, whilst the wear mechanism of the AlCoCrFeNi coating primarily belongs to micro-cutting abrasive wear and oxidation wear, and the oxide film formed in the course of friction and wear contributed to the wear resistance of the AlCoCrFeNi coating. In conclusion, the AlCoCrFeNi coating presents better high-speed friction and wear performance than the hard Cr coating.
Key words:  electrospark deposition    high-entropy alloy    AlCoCrFeNi coating    hard Cr coating    hardness    elasticity modulus    high-speed friction and wear
                    发布日期:  2019-05-08
ZTFLH:  TB304  
  TB34  
基金资助: 辽宁省自然科学基金(201602643);沈阳理工大学辽宁省兵器科学与技术重点实验室开放基金(4771004kfs25)
通讯作者:  zhangjian6165@aliyun.com   
作者简介:  郭策安,沈阳理工大学,副教授。2015年7月毕业于东北大学,材料学博士学位。主要从事武器系统新材料新工艺的技术研发,重点研究材料的腐蚀与防护技术。近年主持了4项省部级科研项目,发表学术论文20余篇。张健,沈阳理工大学,教授。2012年5月毕业于东北大学,材料学博士学位。主要从事武器系统新材料新工艺的技术研发,重点研究材料的腐蚀与防护技术。近年主持完成了10余项国家军品科研项目,发表学术论文40余篇。多项成果获国家国防科学技术奖、兵器工业集团公司科技进步奖。
引用本文:    
郭策安, 赵宗科, 赵爽, 卢凤生, 赵博远, 张健. 电火花沉积AlCoCrFeNi高熵合金涂层的高速摩擦磨损性能[J]. 材料导报, 2019, 33(9): 1462-1465.
GUO Ce’an, ZHAO Zongke, ZHAO Shuang, LU Fengsheng, ZHAO Boyuan, ZHANG Jian1. High-speed Friction and Wear Performance of Electrospark Deposited AlCoCrFeNi High-entropy Alloy Coating. Materials Reports, 2019, 33(9): 1462-1465.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18050104  或          http://www.mater-rep.com/CN/Y2019/V33/I9/1462
1 Qiao J W, Wang Z, Ren L W, et al.Materials Science & Engineering A,2016,657,353.
2 Xia Z H, Zhang M, Zhang Y, et al.Intermetallics,2018,94,65.
3 Chuang M H, Tsai M H, Wang W R, et al. Acta Materialia,2011,59(16),6308.
4 Sun R W, Zhang W Q, Fu H M. Heat Treatment of Metals,2015,40(9),160(in Chinese).
孙日伟,张伟强,付华萌.金属热处理,2015,40(9,160.
5 Chen Y Y,Duval T,Hung U D,et al. Corrosion Science,2005,47(9),2257.
6 Cheng J, Liu D, Liang X, et al. Surface & Coatings Technology,2015,281(7),109.
7 Shang C, Axinte E, Sun J, et al. Materials & Design,2017,117,193.
8 Hsu W L, Murakami H, Yeh J W, et al. Surface & Coatings Technology,2017,316,71.
9 Wang Y X, Yang Y J, Yang H J, et al. Materials Chemistry & Physics,2018,210,233.
10 Jiang J B, Lian G F, Xu M S. Journal of Chongqing University of Technology (Natural Science),2015,29(1),34(in Chinese).
江吉彬,练国富,许明三.重庆理工大学学报(自然科学),2015,29(1),34.
11 Yang J B, Guo Q P, Zhao B Y, et al. Materials Review B: Research Papers,2017,31(12),35(in Chinese).
杨君宝,郭秋萍,赵博远,等.材料导报:研究篇,2017,31(12),35.
12 Hong X, Tan Y F, Wang X L, et al. Surface & Coatings Technology,2016,305,67.
13 Wang X R, Wang Z Q, Li W S, et al. Materials Letters,2017,197,143.
14 Zhang J, Han J L, Guo C A, et al. Functional Materials,2015(13),13144(in Chinese).
张健,韩继龙,郭策安,等.功能材料,2015(13),13144.
15 Buter T M, Weaver M L. Journal of Alloys & Compounds,2016,674,229.
16 Leyland A, Matthews A. Wear,2000,246(1),1.
17 Ipaz L, Caicedo J C, Esteve J, et al. Applied Surface Science,2012,258(8),3805.
18 Chen Y F, Ye W, Mao R S, et al. Journal of Chongqing University of Technology (Natural Science),2013,27(5),29(in Chinese).
陈元芳,叶伟,茆荣山,等.重庆理工大学学报(自然科学),2013,27(5),29.
19 Wang J, Chen M, Yang L, et al. Applied Surface Science,2016,366(11),245.
[1] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[2] 刘谦, 王昕阳, 黄燕滨, 谢璐, 许诠, 黄俊雄. 高熵合金设计与计算机模拟方法的研究进展[J]. 材料导报, 2019, 33(z1): 392-397.
[3] 郭宝超, 蒋恩, 陈亮. 压水堆驱动机构钩爪激光与GTAW钴基合金堆焊层组织分析及性能表征[J]. 材料导报, 2019, 33(z1): 416-419.
[4] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[5] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[6] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[7] 赵雪柔, 吕煜坤, 石拓. 高熵合金相形成理论研究进展[J]. 材料导报, 2019, 33(7): 1174-1181.
[8] 陈枭, 白小波, 王洪涛, 纪岗昌. 超音速火焰喷涂多尺度WC-17Co粉末制备的金属陶瓷涂层的组织结构与性能[J]. 材料导报, 2019, 33(4): 684-688.
[9] 聂光临, 包亦望, 田远, 万德田. 水泥砂浆弹性模量随温度的演化规律[J]. 材料导报, 2019, 33(2): 251-256.
[10] 曹聪聪, 李文亚, 杨康, 李成新, 纪纲. 基体硬度和热学性质对冷喷涂TC4钛合金涂层组织和力学性能的影响[J]. 材料导报, 2019, 33(2): 277-282.
[11] 牟信妮, 卢立新, 李国辉. 基于灰关联熵理论的蜂窝纸板面内承载机理及性能影响分析[J]. 材料导报, 2019, 33(12): 2100-2106.
[12] 颜建辉, 李凯玲, 汪异, 邱敬文. 机械合金化和放电等离子烧结制备NbMoCrTiAl高熵合金[J]. 材料导报, 2019, 33(10): 1671-1675.
[13] 王虎, 王智慧. 等离子熔覆法制备AlxCoCrFeNi高熵合金微观组织与性能研究[J]. 《材料导报》期刊社, 2018, 32(4): 589-592.
[14] 杨理京,李争显,黄春良,王培,姚建华. 激光辅助冷喷涂制备高硬度材料涂层的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 412-417.
[15] 李安敏,史君佐,谢明款. 高熵合金力学性能的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 461-466.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed