Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (3): 461-466    https://doi.org/10.11896/j.issn.1005-023X.2018.03.017
     材料综述 |
高熵合金力学性能的研究进展
李安敏1,2,史君佐2,谢明款2
1 广西大学广西有色金属及特色材料加工重点实验室,南宁 530004
2 广西大学资源环境与材料学院,南宁 530004
Research Progress on Mechanical Properties of High Entropy Alloys
Anmin LI1,2,Junzuo SHI2,Mingkuan XIE2
1 Key Laboratory of Processing for Non-ferrous Metal and Featured Materials, Guangxi University, Nanning 530004
2 School of Resources, Environment and Materials, Guangxi University, Nanning 530004
下载:  全 文 ( PDF ) ( 1229KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

高熵合金作为一类新型的合金,具有许多优于传统合金的性能,在诸多领域有广阔的应用前景。高熵合金现阶段的研究主要集中在其力学性能方面,它的高强度、高硬度、高耐磨性和耐腐蚀性等优点展现出了其作为在严酷条件下服役的结构材料的潜力,但目前对高熵合金的研究仍处于探索性阶段,所以研究高熵合金的力学性能具有重要的现实意义。主要综述了组分、制备工艺、热处理工艺、冷轧等对高熵合金的组织与力学性能的影响,并展望了高熵合金的应用前景。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李安敏
史君佐
谢明款
关键词:  高熵合金  热处理  冷轧  力学性能    
Abstract: 

High entropy alloys (HEAs) is a new kind of alloy with many properties superior to traditional alloys, and it has broad application prospects in many fields. At present, the research of high entropy alloys mainly focused on the mechanical properties, its high strength, high hardness, high wear resistance and corrosion resistance and other advantages manifest its potential as a structural material to serve under harsh conditions, but the current research of high entropy alloy is still in the exploratory stage. Researches on the mechanical properties of HEAs will be necessary and significant. In this paper, the effects of composition, preparation, heat treatment, and cold rolling on the microstructure and mechanical properties of HEAs are reviewed, and the application prospect of HEAs is also discussed.

Key words:  high entropy alloy    heat treatment    cold rolling    mechanical properties
               出版日期:  2018-02-10      发布日期:  2018-02-10
ZTFLH:  TG457.14  
基金资助: 广西大学广西有色金属及特色材料加工重点实验室开放基金(GXKGJ16-14);广西大学2016“大创计划”国家级创新训练项目(201610593056);广西有色金属及特色材料加工重点实验室建设项目(15-140-03)
作者简介:  李安敏:女,1973年生,博士,副教授,研究方向为高熵合金的强韧化 E-mail: lamanny@126.com
引用本文:    
李安敏,史君佐,谢明款. 高熵合金力学性能的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 461-466.
Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys. Materials Reports, 2018, 32(3): 461-466.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.03.017  或          http://www.mater-rep.com/CN/Y2018/V32/I3/461
图1  不同Al含量的FeCoNiCrMn高熵合金拉伸性能曲线[12](电子版为彩图)
Alloy Micro-hardness(HV0.2)
Entirety Intracrystalline
AlFeCrCoCu 452 593
AlFeCrCoCuMn 482 623
AlFeCrCoCuV 510 642
AlFeCrCoCuMo 518 658
AlFeCrCoCuTi 570 645
AlFeCrCoCuZr 698 726
表1  AlFeCrCoCu-X合金的硬度[19]
图2  屈服强度、抗拉强度和延伸率与应变量的关系曲线[56]
1 Yeh J W, Chen S K, Lin S J , et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004,6(5):299.
2 Zhou Y J, Zhang Y, Wang Y L , et al. Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties[J]. Applied Physics Letters, 2007,90(18):253.
3 Zhao Y J, Qiao J W, Ma S G , et al. A hexagonal close-packed high-entropy alloy: The effect of entropy[J]. Materials & Design, 2016,96:10.
4 Zhang Y, Zuo T T, Tang Z , et al .Microstructures and properties of high-entropy alloys[J]. Progress in Materials Science, 2014,61:1.
5 Chou H P , Cang Y S. Chen S K, et al, Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0≤x≤2) high-entropy alloys[J]. Materials Science and Engineering:B, 2009,163(3):184.
6 Gali A, George E P . Tensile properties of high- and medium-entropy alloys[J]. Intermetallics, 2013,39(4):74.
7 Tang Z, Huang L, He W , et al. Alloying and processing effects on the aqueous corrosion behavior of high-entropy alloys[J]. Entropy, 2014,16(2):895.
8 Liu L . Effects of alloy elements on microstructure and properties of high entropy alloys[D]. Changchun:Jilin University, 2012(in Chinese).
8 刘亮 . 合金元素对高熵合金组织与性能的影响[D]. 长春:吉林大学, 2012.
9 Shun T T, Hung C H, Lee C F . Formation of ordered/disordered nanoparticles in FCC high entropy alloys[J]. Journal of Alloys & Compounds, 2010,493(1):105.
10 Yang X, Zhang Y . Prediction of high-entropy stabilized solid-solution in multi-component alloys[J]. Materials Chemistry & Phy-sics, 2012,132(2-3):233.
11 Liang X B, Wei M, Cheng J B , et al. Reaserch progress in advanced materials of high-entropy alloys[J]. Journal of Materials Enginee-ring, 2009,30(12):75.
12 He J Y, Liu W H, Wang H , et al. Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system[J]. Acta Materialia, 2014,62:105.
13 Wang W R, Wang W L, Wang S C , et al. Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys[J]. Intermetallics, 2012,26(7):44.
14 Li B Y, Peng K, Hu A P , et al. Structure and properties of FeCoNi-CrCu0.5Alx, high-entropy alloy[J]. Transactions of Nonferrous Metals Society of China, 2013,23(3):735.
15 Yurchenko N Y, Stepanov N D, Shaysultanov D G , et al. Effect of Al content on structure and mechanical properties of the AlxCrNbTiVZr (x=0;0.25;0.5;1) high-entropy alloys[J]. Materials Cha-racterization, 2016,121:125.
16 Liu L, Qi J G, Wang B , et al. Microstructure and mechanical properties of CoCrFeNiVx high entropy alloys[J].Special Casting & Nonferrous Alloys,2015(11):1130(in Chinese).
16 刘亮, 齐锦刚, 王冰 , 等. CoCrFeNiVx高熵合金的组织与力学性能[J].特种铸造及有色合金,2015(11):1130.
17 Chen H Y, Tsai C, Tung C C , et al. Effect of the substitution of Co by Mn in Al-Cr-Cu-Fe-Co-Ni high-entropy alloys[J]. Annales de Chimie:Science des Materiaux, 2006,31(6):685.
18 Xie H B, Liu G Z, Guo J J , et al. Research on microstructure and properties of AlFeCrCoCu high-entropy alloy[J]. Rare Metals and Cemented Carbides,2015(3):33(in Chinese).
18 谢红波, 刘贵仲, 郭景杰 , 等. AlFeCrCoCu多组元高熵合金组织与性能的研究[J].稀有金属与硬质合金,2015(3):33.
19 Xie H B, Liu G Z, Guo J J , et al. Effects of Mn, V, Mo, Ti, Zr elements on microstructure and high temperature oxidation perfor-mance of AlFeCrCoCu-X high-entropy alloys[J]. The Chinese Journal of Nonferrous Metals,2015(1):103(in Chinese).
19 谢红波, 刘贵仲, 郭景杰 . Mn、V、Mo、Ti、Zr元素对AlFeCrCoCu-X高熵合金组织与高温氧化性能的影响[J].中国有色金属学报,2015(1):103.
20 Zhu Z G , et al. Compositional dependence of phase formation and mechanical properties in three CoCrFeNi-(Mn/Al/Cu) high entropy alloys[J]. Intermetallics, 2016,79:1.
21 Lu Y, Gao X, Jiang L , et al. Directly cast bulk eutectic and nea-reutectic high entropy alloys with balanced strength and ductility in a wide temperature range[J]. Acta Materialia, 2017,124:143.
22 Jiang L, Cao Z Q, Jie J C , et al. Effect of Mo and Ni elements on microstructure evolution and mechanical properties of the CoFeNix-VMoy high entropy alloys[J]. Journal of Alloys & Compounds, 2015,649:585.
23 Liu X, Lei W, Ma L , et al. On the microstructures, phase assemblages and properties of Al0.5CoCrCuFeNiSix high-entropy alloys[J]. Journal of Alloys & Compounds, 2015,630:151.
24 Liu S Q, Huang W G . Microstructure and mechanical performance of AlCoCrNiSix high-entropy alloys[J]. Journal of Materials Enginee-ring,2012(1):5(in Chinese).
24 刘恕骞, 黄维刚 . AlCoCrNiSix高熵合金微观组织结构与力学性能[J]. 材料工程, 2012(1):5.
25 Cai J B, Wu Y J, Zhang D D , et al. Microstructure and mechanical property of high-entropy alloy with multi-principal elements[J].Rare Metals and Cemented Carbides,2011(4):37(in Chinese).
25 蔡建宾, 吴宇建, 张冬冬 , 等. Al0.5CoCrFeNiBx多主元高熵合金的组织结构和力学性能[J].稀有金属与硬质合金,2011(4):37.
26 Varalakshmi S, Kamaraj M, Murty B S . Synjournal and characterization of nanocrystalline AlFeTiCrZnCu high entropy solid solution by mechanical alloying[J]. Journal of Alloys & Compounds, 2008,460(1):253.
27 Shao X, Zhang Y P, Zhou H . Microstructure and mechanical properties of AlCrFeNixCoCuTi high entropy alloys prepared by powder metallurgy[J]. Foundry Technology, 2013,34(3):283(in Chinese).
27 邵霞, 张云鹏, 周航 . 粉末冶金制备AlCrFeNixCoCuTi高熵合金的组织及性能研究[J]. 铸造技术, 2013,34(3):283.
28 Zhang H, Pan Y, He Y Z . Synjournal and characterization of FeCo-NiCrCu high-entropy alloy coating by laser cladding[J]. Materials & Design, 2011,32(4):1910.
29 Guo W, Liang X B, Chen Y X , et al. A kind of new thermal spraying material[J]. Materials Review, 2011,25(S2):504(in Chinese).
29 郭伟, 梁秀兵, 陈永雄 , 等. 一种新型的热喷涂材料[J]. 材料导报, 2011,25(专辑18):504.
30 Zhang L D, Liu C M, Sun H D , et al. Crystalline structure of AlCrTaTiNi high entropy alloys[J]. Journal of Functional Materials, 2012,43(3):394(in Chinese).
30 张立东, 刘春海, 孙化冬 , 等. 晶体AlCrTaTiNi高熵合金薄膜[J]. 功能材料, 2012,43(3):394.
31 Yao C Z, Ma H X, Tong Y X . Electrochemical preparation and magnetic study of amorphous nanostructured Nd-Fe-Co-Ni-Mn high entropy alloy film[J]. Chinese Journal of Applied Chemistry, 2011,28(10):1189(in Chinese).
31 姚陈忠, 马会宣, 童叶翔 . 非晶纳米高熵合金薄膜Nd-Fe-Co-Ni-Mn的电化学制备及磁学性能[J]. 应用化学, 2011,28(10):1189.
32 Varalakshmi S, Kamaraj M, Murty B S . Processing and properties of nanocrystalline CuNiCoZnAlTi high entropy alloys by mechanical alloying[J]. Materials Science and Engineering:A, 2010,527:1027.
33 Varalakshmi S, Appa Rao G, Kamaraj M , et al. Hot consolidation and mechanical properties of nanocrystalline equiatomic AlFeTiCrZnCu high entropy alloy after mechanical alloying[J]. Journal of Materials Science, 2010,45:5158.
34 Guo W J . Microstructure and mechanical properties of NbMoTaW(V) high-entropy alloy prepared by mechanical alloying[D]. Guangzhou:South China University of Technology, 2016(in Chinese).
34 郭文晶 . 机械合金化NbMoTaW(V)高熔点高熵合金的组织及其性能[D]. 广州:华南理工大学, 2016.
35 Wang X, Wang L, Li R B , et al. Research on microstructure and mechanical properties of AlCrTaTiZrNx high-entropy alloy nanostructure coating[J].Hot Working Technology,2015(16):198(in Chinese).
35 王馨, 汪龙, 李荣斌 , 等. AlCrTaTiZrNx高熵合金纳米涂层的微观组织和力学性能研究[J].热加工工艺,2015(16):198.
36 Liang X B, Chen Y X, Zhang Z B , et al. Effect of heat treatment on FeCrNiCoCu high-entropy alloy coating[J]. Journal of Academy of Armored Force Engineering, 2013,27(4):96(in Chinese).
36 梁秀兵, 陈永雄, 张志彬 , 等. 热处理对FeCrNiCoCu高熵合金涂层的影响[J]. 装甲兵工程学院学报, 2013,27(4):96.
37 Lin Y C, Cho Y H . Elucidating the microstructural and tribological characteristics of NiCrAlCoCu and NiCrAlCoMo multicomponent alloy clad layers synthesized in situ[J]. Surface and Coatings Technology, 2009,203(12):1694.
38 Ma M X, Xiu Y X, Gu Y , et al. Synjournal of AlxCoCrNiMo high entropy alloy coatings by laser cladding[J]. Applied Laser,2010(6):433(in Chinese).
38 马明星, 柳沅汛, 谷雨 , 等. 激光制备AlxCoCrNiMo高熵合金涂层的研究[J].应用激光,2010(6):433.
39 Qiu X W, Zhang Y P, Liu C G . Microstructure and properties of Al2CrFeCoxCuNiTi high-entropy alloy coating prepared by laser cladding[J].Materials Science and Engineering of Powder Metallurgy,2013(5):735(in Chinese).
39 邱星武, 张云鹏, 刘春阁 . 激光熔覆法制备Al2CrFeCoxCuNiTi高熵合金涂层的组织与性能[J].粉末冶金材料科学与工程,2013(5):735.
40 Hallberg H . Influence of process on grain refinement in AA1050 aluminum[J]. International Journal of Mechanical Sciences, 2013,26:260.
41 王水华, 张勇 . 多种工艺对CoCrFeNiCu高熵合金组织及拉伸性能的影响[ C]∥2011中国材料研讨会.北京, 2011.
42 Jiang L, Jiang H, Lu Y P , et al. Mechanical properties improvement of AlCrFeNi2Ti0.5 high entropy alloy through annealing design and its relationship with its particle-reinforced microstructures[J]. Journal of Materials Science and Technology, 2015,31:397.
43 Lu Y, Gao X, Jiang L , et al. Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range[J]. Acta Materialia, 2017,124:143.
44 Yang S J, Wu B, Liu D X , et al. Effect of heat treatment on microstructure and hardness of multicomponent high entropy alloy Al0.5-CoCrCuFeNi[J].Heat Treatment of Metals,2015(11):126(in Chinese).
44 杨上金, 吴波, 刘灯宪 , 等. 热处理对Al0.5CoCrCuFeNi高熵合金显微组织与硬度的影响[J].金属热处理,2015(11):126.
45 Tsai K Y, Tsai M H, Yeh J W . Sluggish diffusion in Co-Cr-Fe-Mn-Ni high entropy alloys[J]. Acta Materialia, 2013,61(13):4887.
46 Tang Q H, Cai J B, Wu G F , et al. Effects of heat treatment on microstructure and mechanical properties of Al0.5CoCrFeNiB0.2 high-entropy alloy[J]. China Foundry, 2011(1):24(in Chinese).
46 唐群华, 蔡建宾, 吴桂芬 , 等. 热处理对Al0.5CoCrFeNiB0.2高熵合金组织结构及力学性能的影响[J].铸造,2011(1):24.
47 Munitz A , et al. Heat treatment impacts the micro-structure and mechanical properties of AlCoCrFeNi high entropy alloy[J]. Journal of Alloys and Compounds, 2016,683:221.
48 He F, Wang Z, Niu S , et al. Strengthening the CoCrFeNiNb0.25 high entropy alloy by FCC precipitate[J]. Journal of Alloys & Compounds, 2016,667:53.
49 Niu S, Kou H, Guo T , et al. Strengthening of nanoprecipitations in an annealed Al0.5CoCrFeNi high entropy alloy[J]. Materials Science & Engineering A, 2016,671:82.
50 Zhang G X, Ren B, Zhao R F , et al. Effects of aging treatment on microstructure and mechanical properties of CuxCrFeNiAl high-entropy alloys[J]. Special Casting & Nonferrous Alloys, 2015,35(4):440(in Chinese).
50 张国玺, 任波, 赵瑞锋 , 等. 时效处理对CuxCrFeNiAl高熵合金组织与硬度的影响[J]. 特种铸造及有色合金, 2015,35(4):440.
51 Tang Q H, Zhao Y G, Cai J B , et al. Effect of aging treatment on microstructures and mechanical properties of Al0.5CoCrFeNi high-entropy alloy[J]. Nonferrous Metals(Extractive Metallurgy),2011(4):47(in Chinese).
51 唐群华, 赵亚光, 蔡建宾 , 等. 时效处理对Al0.5CoCrFeNi高熵合金微观组织和力学性能的影响[J].有色金属(冶炼部分),2011(4):47.
52 Wang F J, Zhang Y, Chen G L , et al. Cooling rate and size effect on the microstructure and mechanical properties of AlCoCrFeNi high entropy alloy[J]. Journal of Engineering Materials & Technology, 2009,131(3):034501.
53 Górecki K, Bala P, Cios G , et al. The influence of cooling rate du-ring crystallization on the effective partitioning coefficient in high-entropy alloys from Al-Ti-Co-Ni-Fe system[J]. Metallurgical and Materials Transactions A, 2016,47(7):3257.
54 Otto F, Dlouhy A, Somsen C , et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy[J]. Acta Materialia, 2013,61(15):5743.
55 Wang S H . Effects of processing on the microstructural and mechanical properties of CoCrFeNiCu high entropy alloys[D]. Beijing:Beijing University of Science and Technology, 2011(in Chinese).
55 王水华 . 多种工艺对CoCrFeNiCu高熵合金显微组织和力学性能的影响[D]. 北京:北京科技大学, 2011.
56 Wang Z, Gao M C, Ma S G , et al. Effect of cold rolling on the microstructure and mechanical properties of Al0.25 CoCrFe1.25Ni1.25, high-entropy alloy[J]. Materials Science & Engineering A, 2015,645:163.
57 Fan T Y, Tang Q H, Chen W Z , et al. Effects of plastic deformation on microstructure and mechanical properties of Al0.5FeCoCrNi high-entropy alloy[J]. Journal of Materials Science and Engineering, 2013,31(2):258(in Chinese).
57 范太云, 唐群华, 陈文哲 , 等. 塑性变形对Al0.5FeCoCrNi高熵合金组织结构和性能的影响[J]. 材料科学与工程学报, 2013,31(2):258.
58 Huang Y N, Tang Q H, Dai P Q . Effects of rolling deformation on microstructure and properties of Al0.3CoCrFeNi high-entropy alloy[J]. Materials for Mechanical Engineering, 2015,39(8):51(in Chinese).
58 黄艺娜, 唐群华, 戴品强 . 轧制变形对Al0.3CoCrFeNi高熵合金显微组织和性能的影响[J]. 机械工程材料, 2015,39(8):51.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[3] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[4] 刘谦, 王昕阳, 黄燕滨, 谢璐, 许诠, 黄俊雄. 高熵合金设计与计算机模拟方法的研究进展[J]. 材料导报, 2019, 33(z1): 392-397.
[5] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[6] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[7] 郭建业, 赵英民, 张丽娟, 苏力军, 李文静, 杨洁颖. 高温可重复使用二氧化硅气凝胶复合材料性能研究[J]. 材料导报, 2019, 33(z1): 202-205.
[8] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[9] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[10] 郭策安, 赵宗科, 赵爽, 卢凤生, 赵博远, 张健. 电火花沉积AlCoCrFeNi高熵合金涂层的高速摩擦磨损性能[J]. 材料导报, 2019, 33(9): 1462-1465.
[11] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[12] 王川, 李德富. 冷轧变形量对5A02铝合金管材组织和性能的影响[J]. 材料导报, 2019, 33(8): 1361-1366.
[13] 陈琛辉, 蒋璐瑶, 刘成龙, 黄伟九, 郭勇义, 胥桥梁. 搅拌摩擦加工细晶TA2工业纯钛晶粒长大规律[J]. 材料导报, 2019, 33(8): 1367-1370.
[14] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[15] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed