Please wait a minute...
材料导报  2025, Vol. 39 Issue (3): 23090210-9    https://doi.org/10.11896/cldb.23090210
  金属与金属基复合材料 |
纳米TiB2对CoCrFeNiSi高熵合金涂层耐磨与耐蚀性能的影响
张泽疆, 李新梅*, 朱春金, 李航, 杨定力
新疆大学机械工程学院,乌鲁木齐 830000
Effect of Nano-TiB2 on Wear and Corrosion Resistance of CoCrFeNiSi High-entropy Alloy Coating
ZHANG Zejiang, LI Xinmei*, ZHU Chunjin, LI Hang, YANG Dingli
School of Mechanical Engineering, Xinjiang University, Urumqi 830000, China
下载:  全 文 ( PDF ) ( 55292KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作在40Cr表面激光熔覆CoCrFeNiSi-xTiB2(x=2.5%,5.0%,7.5%,10.0%,质量分数)高熵合金(High-entropy alloy,HEA)复合涂层,对涂层的物相、显微组织、硬度、摩擦磨损和电化学腐蚀性能进行分析,探讨纳米TiB2陶瓷颗粒对HEA涂层的影响。结果表明,x=2.5%,5.0%,7.5%时涂层物相由双相FCC和BCC组成;x=10.0%时在两相的基础上生成硼化物CrB,涂层显微组织由等轴晶转变为典型的柱状树枝晶。涂层的显微硬度随纳米TiB2颗粒的增多而提高,x=10.0%时涂层平均硬度达到最高,为HV547.11,约为基体的2.72倍,其硬度提升的主要原因是固溶强化和弥散强化。随TiB2含量的增加,复合涂层的磨损量明显减少,x=10.0%时磨损失重量仅为0.13 mg。总体来看,TiB2含量的增加使复合涂层的主要磨损机制从严重磨粒磨损、氧化磨损转变成轻微磨粒磨损、氧化磨损,耐磨性能明显提高。在3.5%NaCl溶液中,x=7.5%时复合涂层的耐蚀性能最佳。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张泽疆
李新梅
朱春金
李航
杨定力
关键词:  高熵合金(HEA)  激光熔覆  纳米陶瓷  耐磨性  耐腐蚀性    
Abstract: CoCrFeNiSi-xTiB2(x=2.5%, 5.0%, 7.5%, 10.0%, in weight percentage) high-entropy alloy (HEA) composite coatings were laser clad on 40Cr surface. The phase, microstructure, hardness, friction wear, and electrochemical corrosion properties of the coatings were analyzed, and the influence of nano-TIB2 ceramic particles on the HEA coating was discussed. The results showed that when x=2.5%, 5.0%, 7.5%, the coating phases were composed of biphase FCC and BCC, and when x=10.0%, boride CrB was formed on the basis of the two phases, and the microstructure changed from equiaxial crystals to typical columnar dendrites. The microhardness of the coating increased with the increase of nano-TiB2 particles. When x=10.0%, the average hardness of the coating reached its maximum value of HV547.11, about 2.72 times higher than that of the substrate. The hardness increase could be ascribed mainly to solid solution strengthening and dispersion strengthening. With the increase of TiB2 content, the wear loss of the composite coating decreased significantly, and the wear loss was only 0.13 mg by adopting an x value of 10.0%. In general, the increasing addition of TiB2 results in the conversion of main wear mechanism of the composite coating from severe abrasive wear and oxidation wear into slight abrasive wear and oxidation wear, and an obviously improved wear resistance. In 3.5%NaCl solution, the composite coating with x=7.5% achieved the best wear resistance.
Key words:  high-entropy alloy (HEA)    laser cladding    nano-ceramics    wear resistance    corrosion resistance
出版日期:  2025-02-10      发布日期:  2025-02-05
ZTFLH:  TG174.4  
基金资助: 国家自然科学基金(52161017);新疆维吾尔自治区自然科学基金(2022D01C386)
通讯作者:  *李新梅,教授,博士研究生导师,长期从事于材料表面改性技术、材料磨损腐蚀及防护领域的研究工作。lxmxj2009@126.com   
作者简介:  张泽疆,新疆大学机械工程学院硕士研究生,在李新梅教授的指导下进行研究,目前主要研究方向为激光熔覆高熵合金。
引用本文:    
张泽疆, 李新梅, 朱春金, 李航, 杨定力. 纳米TiB2对CoCrFeNiSi高熵合金涂层耐磨与耐蚀性能的影响[J]. 材料导报, 2025, 39(3): 23090210-9.
ZHANG Zejiang, LI Xinmei, ZHU Chunjin, LI Hang, YANG Dingli. Effect of Nano-TiB2 on Wear and Corrosion Resistance of CoCrFeNiSi High-entropy Alloy Coating. Materials Reports, 2025, 39(3): 23090210-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23090210  或          http://www.mater-rep.com/CN/Y2025/V39/I3/23090210
1 Zhang C H, Zhang N, Qiang Y H. Journal of Moal Mine Machinery, 2014, 35(1), 90 (in Chinese).
张春红, 张宁, 强颖怀. 煤矿机械, 2014, 35(1), 90.
2 Wang X C. Study on wear resistance of shearer's pick tooth body. Master's Thesis, Wuhan University of Science and Technology, 2011 (in Chinese).
汪旭超. 采煤机截齿齿体耐磨性能研究. 硕士学位论文, 武汉科技大学, 2011.
3 He S H, Cheng F, Xia S Q, et al. Journal of Hot Working Process, 2022,51(18), 22 (in Chinese).
何胜豪, 程芳, 夏松钦, 等. 热加工工艺, 2022, 51(18), 22.
4 Shu F, Wang B, Zhao H, et al. Journal of Thermal Spray Technology, 2020, 29, 789.
5 Shu F Y, Wu L, Zhao H Y, et al. Materials Letters, 2018, 211, 235.
6 Zhang S, Wu C L, Zhang C H, et al. Optics & Laser Technology, 2016, 84, 23.
7 Zhang S, Han B, Li M, et al. Surface and Coatings Technology, 2021, 417, 127218.
8 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials, 2004, 6(5), 299.
9 Zhu Q, Liu Y, Zhang C. Materials Letters, 2022, 318, 132133.
10 Zhang P, Li Z, Liu H, et al. Journal of Manufacturing Processes, 2022, 76, 397.
11 Kumar N, Fusco M, Komarasamy M, et al. Journal of Nuclear Materials, 2017, 495, 154.
12 Lee C P, Chang C C, Chen Y Y, et al. Corrosion Science, 2008, 50(7), 2053.
13 Pereira J C, Zambrano J C, Tobar M J, et al. Surface and Coatings Technology, 2015, 270, 243.
14 Yan G, Zheng M, Ye Z, et al. Journal of Alloys and Compounds, 2021, 886, 161252.
15 Ding L, Wang H. Journal of Thermal Spray Technology, 2021, 30, 2187.
16 Shang X, Liu Q, Guo Y, et al. Journal of Materials Research and Technology, 2022, 21, 2076.
17 Dong Y, Cai Z, Lin G, et al. Materials Today Communications, 2023, 36, 106834.
18 Zhou X, He L, Zhang M, et al. Optik, 2023, 285, 170987.
19 Fu Z, Koc R. Materials Science and Engineering A, 2018, 735, 302.
20 Chen L, Yu T, Guan C, et al. Ceramics International, 2022, 48(10), 14127.
21 Wang X, Pan X, Du B, et al. Transactions of Nonferrous Metals Society of China, 2013, 23(6), 1689.
22 Lin Y, Lei Y, Li X, et al. Optics and Lasers in Engineering, 2016, 82, 48.
23 Razuan R, Jani N A, Harun M K, et al. Transactions of the Indian Institute of Metals, 2013, 66, 309.
24 Liu D, Cheng J B, Ling H. Materials Science and Technology, 2015, 31(10), 1159.
25 Cheng J, Liu D, Liang X, et al. Surface and Coatings Technology, 2015, 281, 109.
26 Zhou Y J, Zhang Y, Wang Y L, et al. Materials Science and Engineering A, 2007, 454, 260.
27 Liu H, Wang X, Yu Y, et al. Materials Research Express, 2023, 10(3), 036512.
28 Fu Z, Koc R. Journal of the American Ceramic Society, 2017, 100(7), 2803.
29 Zheng S, Rementeria R, Kan W, et al. Scripta Materialia, 2021, 201, 113954.
30 Lu J, Zhang H, Chen Y, et al. Corrosion Science, 2021, 180, 109191.
31 Zhao Y L, Yang T, Zhu J H, et al. Scripta Materialia, 2018, 148, 51.
32 Yang C M, Liu X B, Liu Y F, et al. Tribology International, 2023, 188, 108868.
33 Wang S, Zhang T, Du S, et al. Journal of Alloys and Compounds, 2023, 960, 170622.
34 Seol J B, Bae J W, Li Z, et al. Acta Materialia, 2018, 151, 366.
35 Liu Y, Liu C T, Heatherly L, et al. Scripta Materialia, 2011, 64(3), 303.
36 Li Y, Liu H, Liu X, et al. Optik, 2023, 283, 170899.
37 Ogura M, Fukushima T, Zeller R, et al. Journal of Alloys and Compounds, 2017, 715, 454.
38 Sylwestrowicz W, Hall E O. Proceedings of the Physical Society. Section B, 1951, 64(6), 495.
39 Petch N J. Iron Steel Inst, 1953, 174, 25.
40 Hai W, Ren S, Meng J, et al. Tribology Letters, 2012, 48, 425.
41 Wang Y, Li P, Ma N, et al. International Journal of Refractory Metals and Hard Materials, 2023, 115, 106273.
42 Sun D, Zhu L, Cai Y, et al. Surface and Coatings Technology, 2022, 450, 129013.
43 Xiao J K, Tan H, Chen J, et al. Journal of Alloys and Compounds, 2020, 847, 156533.
44 Toroghinejad M R, Ebrahimi F, Shabani A. Journal of Materials Research and Technology, 2022, 21, 3262.
45 Zhang H, Liu G, Ren N, et al. Surface and Coatings Technology, 2023, 464, 129573.
46 Brito C, Vida T, Freitas E, et al. Journal of Alloys and Compounds, 2016, 673, 220.
47 Wang N, Wang R, Feng Y, et al. Corrosion Science, 2016, 112, 13.
48 Wang X, Deng Y, Zhu D, et al. Journal of Materials Research and Technology, 2023, 26, 6389.
49 Shi Z J, Wang Z B, Wang X D, et al. Journal of Alloys and Compounds, 2022, 903, 163886.
50 Bommersbach P, Alemany-Dumont C, Millet J P, et al. Electrochimica Acta, 2005, 51(6), 1076.
51 Della Rovere C A, Alano J H, Silva R, et al. Corrosion Science, 2012, 57, 154.
52 Yang H, Liu X, Li A, et al. Available at SSRN 4397020, DOI:10. 1016/j. jallcom. 2023. 171226.
[1] 万福程, 梁继超, 于爱华, 张嘉振, 路新. 钛涂层制备与后处理工艺及应用研究进展[J]. 材料导报, 2025, 39(2): 24010131-9.
[2] 赵兴源, 刘昕, 刘秋元, 邱肖盼, 张子月, 江社明, 张启富. 连续物理气相沉积带钢涂镀研究进展与应用现状[J]. 材料导报, 2025, 39(2): 24030032-9.
[3] 马东帅, 闫二虎, 白金旺, 王豪, 张硕, 王艺豪, 李唐卫, 郭智洁, 周子锐, 邹勇进, 孙立贤. V-Ti-Fe三元合金显微组织、氢传输行为及耐蚀性能研究[J]. 材料导报, 2024, 38(8): 22110007-7.
[4] 申爱琴, 陈荣伟, 郭寅川, 范建航, 戴晓倩, 丑涛. 季冻区纳米SiO2改性SAP路面混凝土的耐磨性[J]. 材料导报, 2024, 38(7): 23010093-6.
[5] 谢晓明, 沈鹰, 刘秀波, 朱正兴, 李明曦. Mn含量对激光熔覆FeCoCrNiMnx高熵合金涂层高温摩擦学性能的影响[J]. 材料导报, 2024, 38(23): 23120066-9.
[6] 钟丽萍, 路迢迢, 孙林超, 张梅, 王亮亮, 王永建. 镁合金多向锻造技术的研究现状与展望[J]. 材料导报, 2024, 38(23): 23070200-11.
[7] 张雷, 龙伟民, 樊志斌, 都东, 刘大双, 孙志鹏, 李宇佳, 尚勇. CuTi对Ti-6Al-4V钛合金表面金刚石/AlSi复合钎涂层组织与耐磨性能的影响[J]. 材料导报, 2024, 38(21): 23080114-4.
[8] 颜蜀雋, 谭雅莉, 庞忠荣, 万鹏颖, 齐福刚. 六方氮化硼负载纳米氧化铝复合填料的制备及改性环氧涂层的防腐性能研究[J]. 材料导报, 2024, 38(20): 22110089-6.
[9] 舒林森, 张粲东, 于鹤龙, 张朝铭. 激光熔覆原位Ti-C-B-Al复合涂层的结构特征与力学性能[J]. 材料导报, 2024, 38(2): 22080162-5.
[10] 张志强, 杨倩, 于子鸣, 张天刚, 路学成, 王浩. 激光功率对Ti6Al4V/NiCr-Cr3C2熔覆层宏微观组织及性能的影响[J]. 材料导报, 2024, 38(2): 22100243-7.
[11] 全琪炜, 刘向兵, 赵文增, 吴奕初, 徐超亮, 张晏玮, 李远飞, 钱王洁, 贾文清, 尹建. Xe离子辐照后Zr-4和Zr-1Nb合金的力学和耐腐蚀性能研究[J]. 材料导报, 2024, 38(18): 23020010-5.
[12] 刘春泉, 熊芬, 彭龙生, 黄伟, 林英华. 超高速激光熔覆技术的最新研究进展:关键技术特点及优势,设备研发及其技术参数[J]. 材料导报, 2024, 38(17): 23020075-19.
[13] 宁晨红, 高硕洪, 郑江鹏, 王枭, 杨军红, 苏允海, 刘敏, 闫星辰. 蓝光激光熔覆纯铜覆层的组织及性能[J]. 材料导报, 2024, 38(17): 23040078-7.
[14] 高吉昌, 门秀花, 姜帅, 付秀丽, 蒋振峰, 李艳. 高铬铸铁叶片堆焊工艺研究进展[J]. 材料导报, 2024, 38(17): 23050109-9.
[15] 任东亭, 王文权, 张新戈, 杜文博, 朱胜. 镁合金基体超音速等离子喷涂Al-Al2O3复合涂层组织与耐腐蚀性能研究[J]. 材料导报, 2024, 38(16): 22120140-7.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed