Please wait a minute...
材料导报  2019, Vol. 33 Issue (2): 277-282    https://doi.org/10.11896/cldb.201902014
  金属与金属基复合材料 |
基体硬度和热学性质对冷喷涂TC4钛合金涂层组织和力学性能的影响
曹聪聪1, 李文亚1, 杨康1, 李成新2, 纪纲2
1 西北工业大学凝固技术国家重点实验室,陕西省摩擦焊接工程技术重点实验室, 西安 710072
2 西安交通大学材料科学与工程学院,西安 710049
Influence of Substrate Hardness and Thermal Characteristics on Microstructure and Mechanical Properties of Cold Sprayed TC4 Titanium Alloy Coatings
CAO Congcong1, LI Wenya1, YANG Kang1, LI Chengxin2, JI Gang2
1 State Key Laboratory of Solidification Processing, Shaanxi Key Laboratory of Friction Welding Technologies, Northwestern Polytechnical University, Xi’an 710072
2 School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an 710049
下载:  全 文 ( PDF ) ( 3671KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钛合金蜂窝壁板在服役中受损急需修复,现有的修复手段以熔化焊为主,易导致严重冶金缺陷,而冷喷涂的相对低温可使此问题得以避免。采用冷喷涂在AA2024铝合金和TC4钛合金基体上制备了TC4钛合金涂层,借助SEM、XRD、维氏硬度试验、三点弯曲试验研究了基体硬度和热特性对涂层微观组织和力学性能的影响。结果表明,与AA2024基体相比,硬度较高、比热容和导热系数较低的TC4基体与TC4涂层间界面的起伏较小,颗粒表面温度较高,颗粒接触面形成宽度约为5 μm的绝热剪切带,促进了冶金结合。因此,TC4基体表面冷喷涂涂层的孔隙率较低,沉积特性较好;涂层平均微观硬度较高,弯曲性能较好,断口平整,呈脆性断裂,未发生相变。本实验证实了通过喷涂修复钛合金构件的可行性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曹聪聪
李文亚
杨康
李成新
纪纲
关键词:  冷喷涂  基体  硬度  比热容  导热系数  TC4钛合金涂层  沉积特性  孔隙率  微观组织  力学性能    
Abstract: Titanium honeycomb components which suffered damage during service are usually in urgent need of timely repair. The currently prevailing repair method is melt welding, which often causes serious metallurgical defects. The relatively low operating temperature of cold spray is considered to be able to prevent the oxidation of metal particles in comparison. In our work, TC4 titanium alloy coatings were deposited by cold spray on surfaces of AA2024 aluminum alloy and TC4 titanium alloy substrates, respectively. And subsequently SEM, XRD, Vickers hardness test and three point bending test were carried out for the resultant coatings, in order to evaluate the influence of substrates’ hardness and thermal characteristics on coatings’ microstructures and mechanical properties. Results showed that, compared with AA2024 substrate, TC4 substrate, which owns higher hardness, lower heat capacity and lower thermal conductivity, has a less fluctuating interface with the sprayed TC4 coating, a higher particle surface temperature, and promotes the metallurgical bonding owing to the formation of a ~ 5 μm layer of adiabatic shear band among particles’ contact interfaces. This contributes to the lower porosity and more satisfactory deposition effect, and in consequence, higher micro-hardness, better bending property, smooth fractured surface characterized by brittle fracture with no phase change happened. Our research confirmed the feasibility of repairing titanium alloy components by applying cold spray technique.
Key words:  cold spray    substrate    hardness    specific heat capacity    thermal conductivity    TC4 titanium alloy coating    deposition characteristic    porosity    microstructure    mechanical property
                    发布日期:  2019-01-31
ZTFLH:  TG174.442  
基金资助: 国家重点研发项目(2016YFB0701203;2016YFB1100104);上海航天科技基金(SAST2016043)
作者简介:  李文亚,西北工业大学教授,陕西省摩擦焊接技术重点实验室主任。liwy@nwpu.edu.cn
引用本文:    
曹聪聪, 李文亚, 杨康, 李成新, 纪纲. 基体硬度和热学性质对冷喷涂TC4钛合金涂层组织和力学性能的影响[J]. 材料导报, 2019, 33(2): 277-282.
CAO Congcong, LI Wenya, YANG Kang, LI Chengxin, JI Gang. Influence of Substrate Hardness and Thermal Characteristics on Microstructure and Mechanical Properties of Cold Sprayed TC4 Titanium Alloy Coatings. Materials Reports, 2019, 33(2): 277-282.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201902014  或          http://www.mater-rep.com/CN/Y2019/V33/I2/277
1 Luo X T, Wei Y K, Wang Y, et al. Materials & Design,2015,85,527.
2 Vo P, Irissou E, Legoux J G, et al. Journal of Thermal Spray Technology,2013,22(6),954.
3 Li W Y, Coddet C. Rare Metal Materials and Engineering,2009(S3),260(in Chinese).
李文亚,Coddet C.稀有金属材料与工程,2009(S3),260.
4 Yang H B, Jiang S H, Zhao Z Y, et al. Aviation Manufacturing Techno-logy,2013(16),126(in Chinese).
杨海波,江少华,赵志远,等.航空制造技术,2013(16),126.
5 Xiong T Y. Mechanic Mechanical Worker(Hot Working),2003(9),10(in Chinese).
熊天英.机械工人(热加工),2003(9),10.
6 Xiong T Y, Wu J, Jin H Z, et al. Corrosion Science and Protection Technology,2001(5),267(in Chinese).
熊天英,吴杰,金花子, 等.腐蚀科学与防护技术,2001(5),267.
7 Li C J, Li W Y. Surface and Coatings Technology,2003,167(2-3),278.
8 Xu Y X, Chirol M, Li C J, et al. Surface and Coatings Technology,2016,307,603.
9 Li W Y, Yang K, Zhang D D, et al. Materials & Design,2016,95,237.
10 Li W Y, Li C J. China Surface Engineering,2002(1),12(in Chinese).
李文亚,李长久.中国表面工程,2002(1),12.
11 Arabgol Z, Villa M, Assadi H, et al. Acta Materialia,2017,127,287.
12 Li W Y, Zhang C J, Wang H T, et al. Applied Surface Science,2007,253(7),3557.
13 Khun N W, Tan A W Y, Bi K J W, et al. Surface and Coatings Techno-logy,2016,302,1.
14 Wu X K, Zhou X L, Wang J G, et al. Acta Metallurgica Sinica,2010(4),385(in Chinese).
巫湘坤,周香林,王建国,等.金属学报,2010(4),385.
15 Sun W, Tan A W Y, Khun N W, et al. Surface and Coatings Technology,2017,320,452.
16 Wang F. Materials Review B: Research Papers,2017,31(7),138(in Chinese).
王锋.材料导报:研究篇,2017,31(7),138.
17 Zhang N, Chen S Y, Yu X, et al. Journal of Materials and Metallurgy,2016(4),277(in Chinese).
张宁,陈岁元,于笑,等.材料与冶金学报,2016(4),277.
18 Jin L, Cui X Z, Ding Y F, et al. Surface Technology,2017,46(8),96(in Chinese).
靳磊,崔向中,丁元法,等.表面技术,2017,46(8),96.
19 Zhao S Y, Chen G, Tan P, et al. Chinese Journal of Nonferrous Metals,2016(5),980(in Chinese).
赵少阳,陈刚,谈萍,等.中国有色金属学报,2016(5),980.
20 Guo H H, Zhou X L, Cui H, et al. Materials Review,2008(12),56(in Chinese).
郭辉华,周香林,崔华,等.材料导报,2008(12),56.
21 Yang Y, Hao Y, Kong L Y, et al. Thermal Spraying Technology,2015(4),1(in Chinese).
杨阳,郝仪,孔令艳,等.热喷涂技术,2015(4),1.
22 Wang Q, Wang H R, Du M. Corrosion and Protection,2006,27(11),544(in Chinese).
王祺,王洪仁,杜敏.腐蚀与防护,2006,27(11),544.
23 Manap A, Nooririnah O, Misran H, et al. Surface Engineering,2014,30(51),335.
[1] 雷林, 杨庆波, 张志清, 樊祥泽, 李旭, 杨谋, 邓赞辉. AA2195铝锂合金多道次压缩行为及微观组织演变[J]. 材料导报, 2019, 33(z1): 348-352.
[2] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[3] 康凤, 陈文, 胡传凯, 林军, 夏祥生, 吴洋. 时效参数对Ti12LC钛合金组织及性能的影响[J]. 材料导报, 2019, 33(z1): 326-328.
[4] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[5] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[6] 郭宝超, 蒋恩, 陈亮. 压水堆驱动机构钩爪激光与GTAW钴基合金堆焊层组织分析及性能表征[J]. 材料导报, 2019, 33(z1): 416-419.
[7] 张冠星, 薛行雁, 龙伟民, 钟素娟, 孙华为, 董宏伟. BAg45CuZn钎料硫化处理组织和性能演变特性[J]. 材料导报, 2019, 33(z1): 425-427.
[8] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[9] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[10] 丁杨, 邓满宇, 周双喜, 王中平, 董晶亮, 魏永起. 基于COMSOL®模拟材料孔隙率与导热系数的演变关系[J]. 材料导报, 2019, 33(z1): 211-215.
[11] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[12] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[13] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[14] 郭策安, 赵宗科, 赵爽, 卢凤生, 赵博远, 张健. 电火花沉积AlCoCrFeNi高熵合金涂层的高速摩擦磨损性能[J]. 材料导报, 2019, 33(9): 1462-1465.
[15] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed