Please wait a minute...
材料导报  2019, Vol. 33 Issue (9): 1535-1540    https://doi.org/10.11896/cldb.18020081
  金属与金属基复合材料 |
激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展
平学龙, 符寒光, 孙淑婷
北京工业大学材料科学与工程学院,北京 100124
Progress in Preparation of Hard Phase Reinforced Ni-based Alloy Composite Coating by Laser Cladding
PING Xuelong, FU Hanguang, SUN Shuting
School of Materials Science and Engineering, Beijing University of Technology, Beijing 100124
下载:  全 文 ( PDF ) ( 2739KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了满足不同的工况,许多工程部件需具备良好的表面性能,例如:较高的硬度、良好的耐磨性能和耐腐蚀性能等。可以通过在普通材料表面熔覆合金粉末来达到改善表面性能的效果。激光熔覆制备的涂层具有优良的附着力、良好的微观结构、较小的热影响区和优异的力学性能等特点。常用的激光熔覆方法主要包括预置法和同步送粉法。
常用的熔覆材料主要分为三个体系,即:Fe基、Co基和Ni基。Fe基粉末制备的涂层具有较高的硬度和较好的耐磨性,并且价格较为便宜。但是,Fe基涂层在制备过程中容易出现较多的缺陷,从而导致涂层的性能和可靠性下降。Co基涂层具有良好的耐高温性和耐腐蚀性,但是力学性能较差,价格极为昂贵,不适用于大范围的工业生产。Ni基涂层具有较好的耐磨性能、良好的韧性和较好的润湿性能,价格较为经济,有广阔的应用前景。近年来,许多研究人员专注于Ni基涂层强化的研究。
目前,常用的Ni基涂层的强化方法主要包括调整激光熔覆的工艺参数和向Ni基涂层中加入硬质相或适当的元素来改善涂层的性能。很多研究人员专注于改善Ni基合金粉末的成分,即向Ni基粉末中加入硬质相或者合适的元素来提高Ni基涂层的性能。向Ni基涂层中加入的主要硬质相颗粒包括WC、NbC、TiC、TaC和VC等。一些研究人员通过加入化合物合成元素,在激光熔覆的过程中通过原位反应的方法来生成一些碳化物强化相。比如:通过加入纯Nb粉或Nb2O5与石墨粉原位生成NbC;加入纯Ti粉和石墨粉原位反应生成TiC。一些研究人员通过添加某单一元素来提高涂层的性能,如:Nb、Ti、Al、Ta等。此外,还有一些学者研究了稀土元素对涂层性能的影响。
激光熔覆方法制备的Ni基合金涂层具有较高的结合强度、较好的耐腐蚀性和优异的耐磨性,在工程上具有广阔的应用前景。改进合金粉末的成分,可以进一步提高涂层的力学性能。本文综述了硬质颗粒增强镍基合金复合涂层的研究进展,指出了硬质颗粒增强镍基合金涂层需进一步解决的问题,并展望了其应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
平学龙
符寒光
孙淑婷
关键词:  激光熔覆  镍基合金  显微组织  力学性能    
Abstract: For the sake of satisfying diverse service conditions, many engineering components should be equipped with excellent surface properties, such as high hardness, good wear resistance and corrosion resistance. Ordinary metal material can achieve improved surface properties by cladding the alloy powders on its surface. The laser cladded coating holds favorable adhesion property, excellent microstructure, small heat affec-ted zone and outstanding mechanical properties. The commonly used laser cladding approaches primarily include preset powder method and synchronous powder feeding.
The common cladding materials are mainly divided into three categories, namely Fe, Co and Ni based. The Fe-based coatings feature high hardness and wear resistance, and lower price as well. Nevertheless, the Fe-based coating is prone to produce defects during the preparation process, resulting in the decline in performance and reliability of the coating. Co-based coatings hold excellent high temperature resistance and corrosion resistance, yet their mechanical properties are poor and the price is extremely high, which seriously blocks their widespread application in industry. Ni-based coatings possess excellent wear resistance, good toughness and wettability, and their production cost is relatively economical, which show broad application prospects. In recent years, great efforts have been put into the research of Ni-based coating.
At present, the commonly used approach for strengthening Ni based coatings include adjusting the process parameters of laser cladding and adding hard phases or appropriate elements to the Ni based coatings. Many researchers have concentrated on optimizing the composition of Ni-based alloy powders, that is, adding hard phases or appropriate elements to Ni based powders to enhance the properties of the Ni coating. The major hard phase particles added to Ni based coatings include WC, NbC, TiC, TaC and VC. Attempts that adding certain compound elements to assist the generation of reinforcing phases in laser cladding process by in-situ reaction have been made by researchers. For instance, the addition of pure Nb powder (or Nb2O5) and graphite powder contribute to generate NbC, the addition of pure Ti powder and graphite powder is conducive for the formation of TiC by in-situ reaction. Some researchers have tried to introduce a single element including Nb, Ti, Al, Ta and so on, in order to improve the performance of the coating. Besides, the effect of rare earth elements on the properties of coatings have been explored as well.
Ni-based alloy coating prepared by laser cladding are endowed with high bonding strength, excellent corrosion resistance and wear resistance, exhibiting a broad application prospect in engineering. The mechanical properties of the coatings can be further enhanced by improving the composition of the alloy powders. In this article, the research progress of hard particle reinforced Ni-based alloy composite coatings is reviewed. The problems that need to be solved for the hard particle-reinforced nickel-based alloy coatings are pointed out, and the prospects of the research are also discussed.
Key words:  laser cladding    Ni-based alloy    microstructure    mechanical property
                    发布日期:  2019-05-10
ZTFLH:  TG174.44  
基金资助: 国家自然科学基金(51775006)
通讯作者:  hgfu@bjut.edu.cn   
作者简介:  平学龙,北京工业大学材料科学与工程学院硕士研究生。目前主要从事材料的激光表面改性研究。符寒光,男,生于1964年。北京工业大学材料科学与工程学院研究员、博士生导师。长期从事先进耐磨材料研究,特别擅长于大型冶金轧辊凝固与热处理和高强韧性耐磨复合铸件以及高硼耐磨合金等方面的研究。获国家技术发明二等奖2项,国家科技进步二等奖2项,省部级一等奖6项。授权发明专利127项,出版专著4部,发表论文260余篇,SCI、EI收录190余篇。
引用本文:    
平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
PING Xuelong, FU Hanguang, SUN Shuting. Progress in Preparation of Hard Phase Reinforced Ni-based Alloy Composite Coating by Laser Cladding. Materials Reports, 2019, 33(9): 1535-1540.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18020081  或          http://www.mater-rep.com/CN/Y2019/V33/I9/1535
1 Sharma S P, Dwivedi D K, Jain P K. Wear,2009,267(5-8),853.
2 Chaliampalias D, Vourlias G, Pavlidou E, et al. Surface Science,2009,255(6),3605.
3 Zhang J, Hu Y, Tan X J, et al. Chinese Journal of Nonferrous Metals,2015,25(5),1525.
4 Wang P Z, Qu J X, Shao H S, et al. Materials and Design,1996,17(5-6),289.
5 Bansal A, Zafar S, Sharma A K, et al. Journal of Materials Engineering and Performance,2015,24(10),1.
6 Wang S L, Zhang Z Y, Gong Y B, et al. Journal of Alloys and Compounds,2017,728,1116.
7 Quazi M M, Fazal M A, Haseeb A S M A, et al. Journal of Rare Earths,2016,34(6),550.
8 Paul C P, Mishra S K, Tiwari P, et al. Optics and Laser Technology,2013,50,155.
9 Ortiz A, García A, Cadenas M, et al. Surface and Coatings Technology,2017,324,298.
10 Ma Q S, Li Y J, Wang J, et al. Journal of Alloys and Compounds,2015,645,151.
11 Tobar M J, álvarez C, Amado J M, et al. Surface and Coatings Technology,2006,200,6313.
12 Guo C, Chen J M, Zhou J S, et al. Surface and Coatings Technology,2012,206,2064.
13 Zhou S F, Lei J B, Dai X Q, et al. International Journal of Refractory Metals and Hard Materials,2017,64,234.
14 Li F Q, Feng X Y, Chen Y B. Chinese Journal of Lasers,2016,43(4),0403009-1(in Chinese).
李福泉,冯鑫友,陈彦宾.中国激光,2016,43(4),0403009-1.
15 Zang C C, Wang Y Y, Zhang Y D, et al. Rare Metal,2019,39(5),385(in Chinese).
臧春城,王延忠,张以都,等.稀有金属,2019,39(5),385.
16 Matthews S, James B, Hyland M. Surface and Coatings Technology,2013,70,203.
17 Lou D Y, He C L, Shang S, et al. Materials Letters,2013,93,304.
18 Yu J, Zhu L, Luo L M, et al. Hot Working Technology,2010,39(6),86(in Chinese).
俞佳,朱流,罗来马,等.热加工工艺,2010,39(6),86.
19 Zhang D W, Lei T C, Li F J. Wear,2001,251,1372.
20 Zhang D W, Lei T C. Wear,2003,255(1-6),129.
21 Zhang D W, Zhang X P. Surface and Coatings Technology,2005,190(2),212.
22 Wilson J M, Shin Y C. Surface and Coatings Technology,2017,207(9),517.
23 Jiang D, Hong C, Zhong M, et al. Surface and Coatings Technology,2014,249(7),125.
24 Shen M Y, Tian X J, Liu D, et al. Journal of Alloys and Compounds,2018,734,188.
25 Xu X, Mi G Y, Xiong L D, et al. Journal of Alloys and Compounds,2018,740,16.
26 Ikeno S, Furuta K, Matsuda K J. Journal of Japan Institute of Light Metals,1995,45(5),249.
27 Chao M J, Niu X, Yuan B, et al. Surface and Coatings Technology,2006,201,1102.
28 Rajab F H, Liu Z, Li L. Applied Surface Science,2018,427,1135.
29 Lu W J, Zhang D, Zhang X N, et al. Materials Science and Engineering A,2001,311,142.
30 Du J N, Dong G, Deng Q L, et al. Applied Laser,2012(4),277(in Chinese).
杜竞楠,董刚,邓琦林,等.应用激光,2012(4),277.
31 Niu X, Chao M J, Wang W L, et al. Chinese Journal of Lasers,2006,33(7),987.
32 Cao Y B, Zhi S X, Gao Q, et al. Materials Characterization,2016,119,159.
33 Wu X L. Surface and Coatings Technology,1999,115,111.
34 Chao M J, Wang W L, Liang E J, et al. Surface and Coatings Technology,2008,202(10),1918.
35 Moghaddam E G, Karimzadeh N, Varahram N, et al. Materials Science and Engineering A,2013,585(22),422.
36 Zhao G L, Huang C Z, Liu H L, et al. International Journal of Refractory Metals and Hard Materials,2013,36,122.
37 Wang Z T, Zhou X H, Zhao G G. Transactions of Nonferrous Metals Society of China,2008,18(4),831.
38 Li M, Huang J, Zhu Y Y, et al. Surface and Coatings Technology,2012,206(19-20),4021.
39 Liu K, Li Y J, Wang J, et al. Materials and Design,2015,87,66.
40 Wu W T, Zhang Y, Song B H. Journal of Shijiazhuang Tiedao University,2017,30(2),105(in Chinese).
吴文涛,张洋,宋博瀚.石家庄铁道大学学报(自然科学版),2017,30(2),105.
41 Cheng Y, Dong G, Chen G X, et al. Materials for Mechanical Enginee-ring,2014,38(9),24(in Chinese).
成阳,董刚,陈国喜,等.机械工程材料,2014,38(9),24.
42 Hu Y L, Lin X, Yu X B, et al. Journal of Alloys and Compounds,2017,711,267.
43 Ma Q S, Li Y J, Wang J. International Journal of Refractory Metals and Hard Materials,2017,64,225.
44 Yang L Q, Li Z Y, Zhang Y Q, et al. Applied Surface Science,2018,435,1187.
45 Xiang H, Xu Y, Zhang L, et al. Scripta Materialia,2006,55(4),339.
46 Yu T, Deng Q L, Dong G, et al. Applied Surface Science,2011,257,5098.
47 Zhao N, Tao L, Guo H, et al. Rare Metal Materials and Engineering,2017,46(8),2092.
48 Wang C L, Gao Y, Zeng Z C, et al. Journal of Alloys and Compounds,2017,727,278.
[1] 范舟, 黄泰愚, 刘建仪. 硫对镍基合金825(100)电子结构影响的密度泛函研究[J]. 材料导报, 2019, 33(z1): 332-336.
[2] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[3] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[4] 姜志鹏, 陈小明, 赵坚, 张磊, 伏利, 刘伟. 激光熔覆技术制备非晶涂层的研究进展与展望[J]. 材料导报, 2019, 33(z1): 191-194.
[5] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[6] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[7] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[8] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[9] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[10] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[11] 王川, 李德富. 冷轧变形量对5A02铝合金管材组织和性能的影响[J]. 材料导报, 2019, 33(8): 1361-1366.
[12] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[13] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[14] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[15] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed