Please wait a minute...
材料导报  2019, Vol. 33 Issue (9): 1541-1549    https://doi.org/10.11896/cldb.18040056
  金属与金属基复合材料 |
新型光催化剂钨酸锌的制备及性能改性研究进展
侯珊, 刘向春
西安科技大学材料科学与工程学院,西安 710054
Preparation and Properties Modification of Novel Photocatalyst Zinc Tungstate: a Review
HOU Shan, LIU Xiangchun
College of Materials Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054
下载:  全 文 ( PDF ) ( 1846KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 当今世界,全球能源危机和环境污染问题日趋紧迫,严重危害人类健康并制约着人类社会发展。为了人类可持续发展,迫切需要开发和应用清洁无污染的新能源来解决环境问题。近年来,光催化氧化技术因其室温深度反应以及可直接利用太阳能作为光源来驱动反应等特点,成为一种高效、理想的环境污染治理技术,引起了各国研究者的密切关注,开发和应用高效的光催化剂已成为环境领域的研究热点。
过去几十年,二氧化钛(TiO2)因无毒、廉价易得、稳定性好等特点,成为研究最广的半导体光催化剂。然而,较窄的光频率响应范围、低的太阳能利用率等缺点限制了其实用化进程。为此,研究人员采用各种不同的制备方法,研究开发了大量具有不同结构的非TiO2基光催化材料,包括简单氧化物、复合金属氧化物、钙钛矿型复合氧化物等。其中,钨酸锌(ZnWO4)是一种具有宽禁带、高激发能、高紫外光响应、高催化活性等独特物理化学特性的重要新型非TiO2基半导体光催化剂,被认为是最有潜力的金属钨酸盐光催化剂之一,其纳米粉体的制备合成及性能研究可为可见光催化降解有机污染物开辟一条新的路径,具有极其重要的研究价值,也是近些年来新型光催化剂研究的焦点。
ZnWO4半导体光催化剂的晶体形貌、尺寸、组成、掺杂物等对其光催化活性具有重要影响。目前,研究者们已通过固相反应法、水热法、溶剂热法、溶胶-凝胶法、化学沉淀法、微乳液法、模板法等不同的制备方法合成了具有不同形貌、尺寸和结晶度的ZnWO4纳米光催化剂,探讨了制备工艺、晶体特性(形貌、尺寸、组成、结晶程度等)、光催化性能之间的关系。但这些方法合成的ZnWO4光响应区域仍然较窄,只能吸收太阳光谱中具有较高能量的紫外光,其光量子产率仍然较低。为了进一步提高ZnWO4的光响应范围,科学家们采用掺杂改性和材料复合等多种活性改进方法来提高其光电转换效率、拓宽光波吸收范围,使其具有良好的可见光响应,优化了其光催化性能。
因此,加深制备工艺和性能改性方法对ZnWO4晶体形貌、尺寸、组成等特性影响以及这些特性对光催化活性影响的理解,对进一步推进钨酸盐光催化材料的研究和应用具有重要的科学意义和实用价值。基于此,本文在分析ZnWO4晶体结构特点的基础上,主要从制备方法、掺杂改性和材料复合这三个方面综述了近年来ZnWO4光催化剂的研究进展,探讨了其结构、形貌、性能之间的相互关系,并进一步指出了ZnWO4光催化剂的发展前景及提高其光催化性能的主要措施。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
侯珊
刘向春
关键词:  钨酸锌  半导体  光催化  纳米材料  掺杂改性    
Abstract: Nowadays, the global energy crisis and environmental pollution are becoming more and more serious, which greatly endangers human health and restricts the development of society. Aiming at the sustainable development of human beings, it is urgent to solve environmental problems by developing and applying new clean energy with less pollution. In recent years, photocatalytic oxidation technology has become an efficient and ideal environmental pollution control technology and aroused numerous interests at home and abroad, due to its capacity of deep reaction at room temperature and utilizing solar energy as light source to directly driven reaction. Accordingly, the development and application of highly efficient photocatalysts has become a research hot spot in the field of the environment.
In the past decades, titanium dioxide (TiO2) has been a widely studied semiconductor photocatalyst, thanks to its nontoxicity, low cost, and favorable stability. Nevertheless, its narrow optical frequency response range and low solar energy utilization rate constitute the bottlenecks for its practical application. Therefore, great efforts have been put into the development of non-TiO2 photocatalytic materials with different structures by various preparation approaches. These photocatalytic materials include simple oxide, composite metal oxide, perovskite-type composite oxide and series compound. Among of them, zinc tungstate (ZnWO4) is a novel non-TiO2 semiconductor photocatalyst with great significance, which features unique physicochemical properties of wide band gap, high excitation energy, strong ultraviolet light response, and satisfactory catalytic activity. Hence, ZnWO4 has been considered as one of the most promising metal tungstate photocatalysts. The synthesis and properties study of ZnWO4 nano-powders pave the way for a novel approach for photocatalytic degradation of organic pollutants, exhibiting extremely important research value and is also the focus of new photocatalyst research in recent years.
Generally, the photocatalytic activity of ZnWO4 semiconductor photocatalyst are greatly affected by the crystal morphology, size, composition, and the dopant. Currently, ZnWO4 nano-photocatalysts with various morphologies, sizes and crystallinities have been synthesized by diverse preparation methods, including solid phase reaction, hydrothermal method, solvothermal method, sol-gel method, chemical precipitation method, micro-emulsion method, and template method. The relationships among preparation process, crystal characteristics (namely crystal morphology, size, composition, and the degree of crystallization), and photocatalytic properties have been studied. However, the photoresponse range of ZnWO4 synthesized by these methods is still narrow, and only the ultraviolet with high energy can be absorbed in the entire solar spectrum, resulting in a low optical quantum yield. For the sake of further broadening the photo response range of ZnWO4, therefore, a variety of improvement approaches of photocatalytic activity, including doping modification and material compounding, have been employed to broaden the photo response range of ZnWO4, realize its strong visible light responsivity, and further enhance the photocatalytic properties of ZnWO4.
Consequently, it is of great scientific significance and practical value in promoting the research and application of tungstate photocatalytic materials to dig out the impact of preparation processes and properties modification approaches on the crystal morphology, size and composition of ZnWO4, and the effect of these characteristics on the photocatalytic activity. Based on the analysis of the ZnWO4 crystal structure characteristics, the research progress of ZnWO4 photocatalyst in recent years is summarized from the aspects of preparation method, doping modification and material compounding, and the interrelations among structure, morphology and properties are discussed as well. Meanwhile, the future development prospects of ZnWO4 photocatalyst is pointed out, and the main measures for optimizing the photocatalytic properties of ZnWO4 are proposed.
Key words:  zinc tungstate    semiconductor    photocatalysis    nanomaterial    doping modification
                    发布日期:  2019-05-10
ZTFLH:  TM281  
基金资助: 凝固技术国家重点实验室开放课题(SKLSP201624);国家自然科学基金(51602252);国家重点基础研发项目子课题(2017YFC0703204)
通讯作者:  liuxc@126.com   
作者简介:  侯珊,硕士研究生。2015年本科毕业于陕西理工大学,获工学学士学位。现为西安科技大学材料科学与工程学院硕士研究生,在刘向春教授的指导下进行科学研究,主要研究方向为光催化应用方面新型功能纳米半导体材料的设计合成。刘向春,教授、硕士研究生导师、博士。于1998年获中国地质大学学士学位,并分别在2005年和2007年获西北工业大学硕士和博士学位。 现为西安科技大学材料科学与工程学院教授、材料学学科带头人,并担任多个国际期刊和中文核心期刊审稿专家以及西安市科技计划项目评审专家,主要从事光催化应用方面新型功能纳米结构材料的设计合成。
引用本文:    
侯珊, 刘向春. 新型光催化剂钨酸锌的制备及性能改性研究进展[J]. 材料导报, 2019, 33(9): 1541-1549.
HOU Shan, LIU Xiangchun. Preparation and Properties Modification of Novel Photocatalyst Zinc Tungstate: a Review. Materials Reports, 2019, 33(9): 1541-1549.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18040056  或          http://www.mater-rep.com/CN/Y2019/V33/I9/1541
1 Zou Z, Ye J, Sayama K, et al. Nature,2001,414(6864),625.
2 Li R, Weng Y, Zhou X, et al. Energy and Environmental Science,2015,8(8),2377.
3 Shi R, Photocatalytic property enhancement for composite oxide by nanostructure fabrication and anion substitution. Master’s Thesis, Tsinghua University, China,2011(in Chinese).
石睿.纳米结构及阴离子取代提高复合氧化物光催化性能的研究.硕士学位论文,清华大学,2011.
4 Yu S P. Research of photoelectric catalystic degradation of organic dyes. Ph.D. Thesis, South China University of Technology, China,2004(in Chinese).
于书平.光电催化降解有机染料的研究.博士学位论文,华南理工大学,2004.
5 Veldurthi N K, Eswar N K R, Singh S A, et al. Catalysis Science & Technology,2018,8(4),1083.
6 Fujishima A, Honda K. Nature,1972,238,37.
7 Carey J H, Lawrence J, Tosine H M. Bulletin of Environmental Contamination & Toxicology,1976,16(6),697.
8 Ohko Y, Ando I, Niwa C, et al. Environmental Science & Technology,2001,35(11),2365.
9 Asahi R, Morikawa T, Ohwaki T, et al. Science,2001,293(5528),269.
10 Schneider J, Matsuoka M, Takeuchi M, et al. Chemical Reviews,2014,114(19),9919.
11 Zhang J M, Xi L H, Zhu Z Q, et al. Materials Review,2007,21(5),92(in Chinese).
张俊敏,奚丽荷,朱忠其,等.材料导报,2007,21(5),92.
12 Wang X Y, Ji Z J, Wang J, et al. Materials Review,2008,22(10),40(in Chinese).
王晓燕,冀志江,王静,等.材料导报,2008,22(10),40.
13 Chen D, Ye J. Advanced Functional Materials,2008,18(13),1922.
14 Dhiman M, Sharma R, Kumar V, et al. Ceramics International,2016,42(11),12594.
15 Gao F, Chen X Y, Yin K B, et al. Advanced Materials,2007,19(19),2889.
16 Nouroozi F, Farzaneh F. Journal of the Brazilian Chemical Society,2011,22(3),484.
17 Nakahira T, Grätzel M. Macromolecular Rapid Communications,1985,6(5),341.
18 Choi W, Termin A, Hoffmann M R. Journal of Physical Chemistry,1994,98(51),13669.
19 Park H,Choi W, Hoffmann M R. Journal of Materials Chemistry,2008,18(20),2379.
20 Zhou D Y, Liang W, Zhang W G, et al. Journal of Nanoscience and Nanotechnology,2018,18(6),4397.
21 Wang C C. Photocatalytic performance on dye wastewater of nano MoS2, TiO2 and its composite. Master’s Thesis, Qufu Normal University,China,2017(in Chinese).
王聪聪.纳米MoS2,TiO2及其复合光催化剂降解印染废水的研究.硕士学位论文,曲阜师范大学,2017.
22 Lv J, Dai K, Zhang J, et al. Applied Surface Science,2015,358,377.
23 Wu C Y. Research on the preparation of tungstate micro-crystallites with scheelite structure by precicitation method. Master’s Thesis, Sichuan Normal University, China,2009(in Chinese).
吴春燕.白钨矿型钨酸盐微晶的沉淀法制备技术研究.硕士学位论文,四川师范大学,2009.
24 Zhang L W, Zhu Y F. Materials China, 2010,29(1),45(in Chinese).
张立武,朱永法.中国材料进展,2010,29(1),45.
25 Zang J C. Journal of Beijing University of Technology,1998,24(3),110(in Chinese).
臧竟存.北京工业大学学报,1998,24(3),110.
26 Chen W, Xia S D, Tang H G, et al. Acta Physica Sinica,1994,43(5),851(in Chinese).
陈伟,夏上达,汤洪高,等.物理学报,1994,43(5),851.
27 Yang S H, Tsai F S, Chen J X. Journal of Solid State Electrochemistry,2010,14(6),937.
28 Yourey J E, Kurtz J B, Bartlett B M. Inorganic Chemistry,2012,43(50),10394.
29 Dong W K, Cho I S, Shin S S, et al. Journal of Solid State Chemistry,2011,184(8),2103.
30 Song X C, Yang E, Zheng Y F, et al. Acta Physico-Chimica Sinica,2007,23(7),1123(in Chinese).
宋旭春,杨娥,郑遗凡,等.物理化学学报,2007,23(7),1123.
31 Hojamberdiev M, Zhu G, Y Xu. Materials Research Bulletin,2010,45(12),1934.
32 Li L, Zeng S Y, Mi Y W, et al. Chinese Journal of Inorganic Chemistry,2012,28(8),1643(in Chinese).
李蕾,曾涑源,米玉伟,等.无机化学学报,2012,28(8),1643.
33 Fu H B, Lin J, Zhang L W. Applied Catalysis A General,2006,306(6),58.
34 Zhao W, Song X Y, Chen G Z. Journal of Materials Science,2009,44(12),3082.
35 Wang Y, Li L, Li G. Applied Surface Science,2017,393,159.
36 Bi J, Wu L, Li Z, et al. Journal of Alloys and Compounds,2009,480(2),684.
37 Nadaraia L, Jalabadze N, Chedia R, et al. IEEE Transactions on Nuclear Science,2010,57(3),1370.
38 Wu Y, Zhang S C, Zhang L W, et al. Chemical Research in Chinese Universities,2007,23(4),465.
39 Huang G L, Zhu Y F. Materials Science & Engineering B,2007,139(2),201.
40 Amouzegar Z, Naghizadeh R, Rezaie H R, et al. Ceramics International,2015,41(1),1743.
41 Jiang X W, Zhao X R, Duan L B, et al. Ceramics International,2016,42(14),15160.
42 Sanchez-Dominguez M K, Pemartin K, Boutonnet M. Current Opinion in Colloid & Interface Science,2012,17(5),297.
43 Emsaki M, Hassanzadeh-Tabrizi S A, Saffar-Teluri A. Journal of Mate-rials Science Materials in Electronics,2018,29(3),2384.
44 Lin S, Chen J B, Weng X L, et al. Materials Research Bulletin,2009,44(5),1102.
45 Yang L, Guan W S, Yan Y S, et al. Integrated Ferroelectrics,2011,127(1),48.
46 Dong T T, Li Z H, Ding Z X, et al. Materials Research Bulletin,2008,43(7),1694.
47 Thomas A, Janáky C, Samu G F, et al. ChemSusChem,2015,8(10),1652.
48 Eranjaneya H, Chandrappa G T. Transactions of the Indian Ceramic Society,2016,75(2),133.
49 Validžić I L, Savić T D, Krsmanovic' R M, et al. Materials Science and Engineering: B,2012,177(9),645.
50 Savicć T D, Validžić I L, Novaković T B, et al. Journal of Cluster Science,2013,24(3),679.
51 Su Y G, Zhu B L, Guan K, et al. Journal of Physical Chemistry C,2012,116(34),18508.
52 Amouzegar Z, Naghizadeh R, Rezaie H R, et al. Ceramics International,2015,41(7),8352.
53 Liu Z, Tian J, Zeng Z B, et al. Materials Research Bulletin,2017,94,298.
54 Kundu S, Ma L, Chen Y Y, et al. Journal of Photochemistry & Photobio-logy A: Chemistry,2017,346,249.
55 Lacomba-Perales R, Ruiz-Fuertes J, Errandonea D, et al. Europhysics Letters,2008,83(3),226.
56 Huang G L, Zhu Y F. Journal of Physical Chemistry C,2007,111(32),11952.
57 Huang G L, Zhu Y F. CrystEngComm,2012,14(23),8076.
58 Chen S F, Sun S X, Sun H G, et al. Journal of Physical Chemistry C,2010,114(17),7680.
59 Song X C, Zheng Y F, Yang E, et al. Journal of Hazardous Materials,2010,179(1),1122.
60 Phuruangrat A, Dumrongrojthanath P, Thongtem T, et al. Journal of the Ceramic Society of Japan,2017,125(2),62.
61 Zhou Y, Zhang Z J, Xu J Y, et al. Journal of Inorganic Materials,2015,30(5),549.
62 Sun L M, Zhao X, Cheng X F, et al. Journal of Physical Chemistry C,2011,115(31),15516.
63 Chen S H, Wang B X, Qiu X H, et al. Advanced Materials Research,2013,621,172.
64 Deng S, Zhang W, Hu Z F, et al. In: International Conference on Material Science and Engineering. Phuket,2017,pp.124.
65 Tung R T. Materials Science & Engineering R,2001,35(1),1.
66 Kumar S G, Devi L G. Journal of Physical Chemistry A,2011,115(46),13211.
67 Qi K Z, Cheng B, Yu J G, et al. Journal of Alloys & Compounds,2017,727,792.
68 Yu C L, Yu J C. Materials Science & Engineering B,2009,164(1),16.
69 Ke J, Niu C G, Zhang J, et al. Journal of Molecular Catalysis A: Chemical,2014,395,276.
70 Li K B, Xue J, Zhang Y H, et al. Applied Surface Science,2014,320(320),1.
71 Keereeta Y, Thongtem S, Thongtem T. Powder Technology,2015,284,85.
72 He D Q, Wang L L, Xu D D, et al. ACS Applied Materials & Interfaces,2011,3(8),3167.
73 Tian N, Huang H W, Zhang Y H, et al. Journal of Materials Research,2014,29(5),641.
74 Huo P W, Tang Y F, Zhou M J, et al. Journal of Industrial & Enginee-ring Chemistry,2016,37,340.
75 Li P, Zhao X, Jia C J, et al. Journal of Materials Chemistry A,2013,1(10),3421.
76 Wang F Z, Li W J, Gu S N, et al. RSC Advances,2015,5(109),89940.
77 Wang F Z, Li W J, Gu S N, et al. ACS Sustainable Chemistry & Engineering,2016,4,6288.
78 Bai X J, Wang L, Zhu Y F. ACS Catalysis,2012,2(12),2769.
79 Zhan S, Zhou F, Huang N B, et al. Applied Surface Science,2015,358,328.
80 Sun L M, Zhao X, Jia C J, et al. Journal of Materials Chemistry,2012,22(44),23428.
81 Wang Y J, Wang Z X. CrystEngComm,2012,14(15),5065.
[1] 郭继鹏, 王敬锋, 林琳, 何丹农. 不同形貌的g-C3N4的制备研究进展[J]. 材料导报, 2019, 33(z1): 1-7.
[2] 张甄, 王宝冬, 徐文强, 秦绍东, 孙琦. 黑色二氧化钛纳米材料研究进展[J]. 材料导报, 2019, 33(z1): 8-15.
[3] 潘留仙, 夏庆林. 新型二维半导体材料砷烯的研究进展[J]. 材料导报, 2019, 33(z1): 22-27.
[4] 冉涛, 张骞, 黎邦鑫, 刘旸, 李筠连. g-C3N4/泡沫镍整体式光催化剂的构建及光氧化去除NO[J]. 材料导报, 2019, 33(z1): 337-342.
[5] 张燕. 一步法制备无表面修饰剂花状金纳米颗粒及其表面增强拉曼散射性能研究[J]. 材料导报, 2019, 33(z1): 314-317.
[6] 高科, 李万万. 近红外二区光声成像造影剂的研究进展[J]. 材料导报, 2019, 33(z1): 481-484.
[7] 肖健, 刘锦平, 刘先斌, 邱贵宝. 泡沫钛表面改性研究进展[J]. 材料导报, 2019, 33(9): 1558-1566.
[8] 杨焜, 王春来, 丁晟, 刘长军, 田丰, 李钒. 荧光碳量子点:合成、特性及在肿瘤治疗中的应用[J]. 材料导报, 2019, 33(9): 1475-1482.
[9] 熊德华, 邓砚文, 杜子娟, 张晴晴, 李宏. CuMnO2/TiO2复合光催化剂增效催化降解亚甲基蓝[J]. 材料导报, 2019, 33(8): 1262-1267.
[10] 叶凯, 梁风, 姚耀春, 马文会, 杨斌, 戴永年. 直流电弧等离子体法制备纳米材料的研究进展[J]. 材料导报, 2019, 33(7): 1089-1098.
[11] 孙健武, 葛美英, 尹桂林, 张芳, 何丹农. 介晶半导体材料的合成及应用研究进展[J]. 材料导报, 2019, 33(7): 1119-1124.
[12] 阮子林, 郝振亮, 张辉, 卢建臣, 蔡金明. Cu2-xS(0≤x≤1)化合物:制备技术、物理特性及应用[J]. 材料导报, 2019, 33(7): 1141-1155.
[13] 张嘉羲, 袁欢, 刘禹彤, 陈雨, 徐明. Fe掺杂的Ag-ZnO纳米复合材料的合成及光催化性能[J]. 材料导报, 2019, 33(6): 941-946.
[14] 占昌朝, 曹小华, 金文雄, 叶志刚, 谢宝华, 徐建兴, 周荣辉. 以水杨酸为模板分子的Nd掺杂分子印迹TiO2的制备及光催化性能[J]. 材料导报, 2019, 33(6): 947-953.
[15] 吕斌, 程坤, 高党鸽, 马建中. 中空结构纳米TiO2微球的可控制备[J]. 材料导报, 2019, 33(5): 770-776.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed