Abstract: Aseries of p-type CuMnO2/n-type TiO2 heterostructure photocatalysts with enhanced photocatalytic activity were fabricated by spin coating CuMnO2 nanocrystals on TiO2 nanorod-array film for the first time. Then, the photocatalytic activity of the obtained CuMnO2/TiO2 for degradation of methylene blue (MB) aqueous solution was investigated. It could be found from the results that the prepared CuMnO2/TiO2 composite showed superior photocatalytic activity to pure TiO2. The excellent photocatalytic activity of CuMnO2/TiO2 could be ascribed to the formation of p-n heterojunctions between CuMnO2nanocrystals and TiO2 nanorods, which ensured the effective separation of photogenerated electrons and holes in CuMnO2/TiO2. In particularly, the CuMnO2/TiO2 with best degradation performance was prepared from 0.25 g/L CuMnO2, showing the photocatalytic efficiency and apparent rate of 88% and 0.298 6 h-1, which were 26% and 80% higher than that of pure TiO2, respectively.
1 Fujishima A, Honda K. Nature, 1972, 238(5358), 37. 2 Ma Y, Wang X L, Jia Y S, et al. Chemical Reviews,2014, 114(19), 9987. 3 Li X, Yu J G, Low J X, et al. Journal of Materials Chemistry A, 2015, 3(6), 2485. 4 Wang X D, Li Z D, Shi J, et al. Chemical Reviews, 2014, 114(19), 9346. 5 Liu B, Chen H M, Liu C, et al. Journal of the American Chemical Society, 2013, 135(27), 9995. 6 Long L L, Zhang A Y, Yang J, et al.ACS Applied Materials & Interfaces, 2014, 6(19), 16712. 7 Luo C Z, Ren X H, Dai Z G, et al. ACS Applied Materials & Interfaces, 2017, 9(28), 23265. 8 Liu W F, Zhou R L, Wang Y Z. Chemical Industry and Engineering Progress, 2016, 35(8), 2446(in Chinese). 刘文芳, 周汝利, 王燕子.化工进展, 2016, 35(8), 2446. 9 Qi K Z, Cheng B, Yu J G, et al. Chinese Journal of Catalysis, 2017, 38(12), 1936. 10 Wang H L, Zhang L S, Chen Z G, et al. Chemical Society Reviews, 2014, 43(15), 5234. 11 Kawazoe H, Yasukawa M, Hyodo H, et al. Nature, 1997, 389(6654), 939. 12 Zhou S, Fang X D, Deng Z H, et al. Progress in Chemistry, 2010, 22(2), 352(in Chinese). 周曙, 方晓东, 邓赞红, 等.化学进展, 2010, 22(2), 352. 13 Yu M Z, Draskovic T I, Wu Y Y. Physical Chemistry Chemical Physics,2014, 16(11), 5026. 14 Xiong D H, Xu Z, Zeng X W, et al. Journal of Materials Chemistry,2012, 22, 24760. 15 Igbari F, Li M, Hu Y, et al. Journal of Materials Chemistry A, 2016, 4(4), 1326. 16 Zhang H, Wang H, Chen W, et al. Advanced Materials,2017, 29(8), 1604984. 17 Dunlap-Shohl W A, Daunis T B, Wang X M, et al. Journal of Materials Chemistry A,2018, 6(2), 469. 18 Wang W Z, Huang X W, Wu S, et al. Applied Catalysis B:Environmental, 2013, 134-135, 293. 19 Sarkar D, Ghosh C K, Mukherjee S, et al. ACS Applied Materials & Interfaces, 2013, 5, 331. 20 Ahmed M A.Journal of Photochemistry and Photobiology A, 2012, 238, 63. 21 Yu C L, Yang K, Shu Q, et al. Chinese Journal of Catalysis, 2011, 32(4), 555(in Chinese). 余长林, 杨凯, 舒庆, 等.催化学报, 2011, 32(4), 555. 22 Liu L M, Yang W Y, Sun W Z, et al.ACS Applied Materials & Interfaces, 2015, 7(3), 1465. 23 Kandjani A E, Sabri Y M, Periasamy S R, et al. Langmuir, 2015, 31(39), 10922. 24 Zhang Y H, Jiu B B, Gong F L, et al. Journal of Physics and Chemistry of Solids,2018, 116,126. 25 Xiong D H, Chang H M, Zhang Q Q, et al. Applied Surface Science, 2015, 347, 747. 26 Shi L L, Wang F, Wang Y P, et al. Scientific Reports, 2016, 6, 21135. 27 Liu B, Aydil E S. Journal of the American Chemical Society, 2009, 131(11), 3985. 28 Zhang Q Q, Xiong D H, Li H, et al. Journal of Materials Science:Materials in Electronics, 2015, 26(12), 10159. 29 Xiong D H, Zhang Q Q, Du Z J, et al. New Journal of Chemistry, 2016, 40(7), 6498. 30 Cao T P, Li Y J, Wang C H, et al. Langmuir, 2011, 27(6), 2946. 31 Dai G P, Yu J G, Liu G. The Journal of Physical Chemistry C,2011, 115(15), 7339. 32 Qiu M Y, Zhang T Y, Li B, et al. Materials Review A:Review Papers, 2012, 26(3), 48(in Chinese). 邱明艳, 张天永, 李彬, 等. 材料导报:综述篇, 2012, 26(3), 48. 33 Ren K X, Liu J, Liang J, et al. Dalton Transactions, 2013, 42(26), 9706. 34 Wang H Q, Li X Y, Yuan Z W, et al. Materials Review, 2017, 31(S1), 30(in Chinese). 王海青, 李秀艳, 苑再武,等.材料导报, 2017, 31(专辑29), 30.