Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (2): 207-212    https://doi.org/10.11896/j.issn.1005-023X.2018.02.010
  物理   材料研究 |材料 |
静电溶液喷射Fe2O3/Al2O3超细纤维负载型光催化剂的制备及催化性能研究
李磊1,2,程博闻2,康卫民2,马晓光2,庄旭品2
1 天津工业大学材料科学与工程学院,天津 300387
2 天津工业大学省部共建分离膜与膜过程国家重点实验室,天津 300387
Fe2O3 Photocatalyst Supported on Ultra-fine Fibrous Al2O3 Prepared via Electro- blown Spinning (EBS) with an Application to Organic Dye Degradation
Lei LI1,2,Bowen CHENG2,Weimin KANG2,Xiaoguang MA2,Xupin ZHUANG2
1 School of Materials Science and Engineering,Tianjin Polytechnic University,Tianjin 300387
2 State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387
下载:  全 文 ( PDF ) ( 3253KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

利用静电溶液喷射法,结合浸渍焙烧工艺成功制备了Fe2O3/Al2O3超细纤维负载型光催化剂。采用SEM、EDS、XRD等技术对其进行表征,以酸性大红(RR 195)的光催化降解为目标反应,评价其光催化活性。结果表明,通过静电溶液喷射方法制备的氧化铝超细纤维毡柔性较好,纤维平均直径为3.78 μm。光催化实验表明,当煅烧温度为500 ℃、铁负载量为195.5 mg/g时,催化剂的性能最佳。在紫外光照及H2O2存在的条件下,反应120 min后,该催化剂对RR 195的脱色率达到95%,3次循环反应后,120 min内染料的脱色率可达70%。反应后该催化剂仍然保持良好的纤维形态,易于分离,避免了二次污染。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李磊
程博闻
康卫民
马晓光
庄旭品
关键词:  静电溶液喷射  氧化铝  超细纤维  氧化铁  负载  光催化剂    
Abstract: 

Ultra-fine fibrous Al2O3 supported Fe2O3 photocatalyst was prepared by an electro-blown spinning (EBS) method combined with impregnation-calcination process, and characterized by techniques such as SEM,EDS and XRD. Photocatalytic degradation of Reactive Red 195 (RR 195) in aqueous solution was used as a probe reaction to evaluate the product’s photocatalytic activity. The results showed that flexible and ultra-fine fibrous alumina mat, which is appropriate for photocatalyst supporter and has an average diameter of 3.78 μm, can be obtained via electro-blown spinning method. The catalytic experimental results suggested that the optimum photocatalytic performance of the photocatalyst was achieved when the sintering temperature was 500 ℃ and the iron loaded content was 195.5 mg/g. The dye decoloration rate reached 95% within 120 min for the first run with H2O2 and UV light, and it can be maintained 70% after three rounds. Moreover,this photocatalyst still maintained good fabric morphology after reaction and was easier to be separated from dye solution, which could avoid the secondary pollution effectively.

Key words:  electro-blown spinning    alumina    ultra-fine fiber    ferric oxide    supported    photocatalyst
出版日期:  2018-01-25      发布日期:  2018-01-25
ZTFLH:  TF123  
基金资助: 国家自然科学基金(51678411);天津自然科学基金(13JCZDJC32500)
引用本文:    
李磊,程博闻,康卫民,马晓光,庄旭品. 静电溶液喷射Fe2O3/Al2O3超细纤维负载型光催化剂的制备及催化性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 207-212.
Lei LI,Bowen CHENG,Weimin KANG,Xiaoguang MA,Xupin ZHUANG. Fe2O3 Photocatalyst Supported on Ultra-fine Fibrous Al2O3 Prepared via Electro- blown Spinning (EBS) with an Application to Organic Dye Degradation. Materials Reports, 2018, 32(2): 207-212.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.02.010  或          https://www.mater-rep.com/CN/Y2018/V32/I2/207
图1  (a)静电溶液喷射实验装置示意图;(b)Fe2O3/Al2O3光催化剂制备原理图
图2  (a)EBS氧化铝纤维毡的SEM图(插图为溶液喷射氧化铝纤维SEM图);(b)EBS氧化铝纤维的直径分布图;(c)Fe2O3/Al2O3光催化剂的SEM图;(d)Fe2O3/Al2O3光催化剂的EDS图(电子版为彩图)
图3  (a)EBS氧化铝纤维的N2等温吸附曲线(插图为纤维孔径分布)和(b)EBS氧化铝纤维毡的孔径分布及平均孔径
图4  (a)EBS氧化铝纤维和(b)不同煅烧温度下催化剂的XRD谱
图5  不同煅烧温度下催化剂的光催化曲线
图6  不同铁负载量催化剂的(a)XRD谱和(b)光催化曲线
图7  Fe2O3/Al2O3超细纤维负载型催化剂的重复利用曲线
图8  Fe2O3/Al2O3超细纤维负载型催化剂对染料降解反应的催化作用判别:(a)0.6 g催化剂,暗态;(b)0.6 g催化剂,可见光;(c)0.6 g催化剂,紫外光;(d)0.6 g催化剂,2 mmol/L H2O2,紫外光
图9  (a)EBS氧化铝纤维毡;(b)经折叠的氧化铝纤维毡;(c)Fe2O3/Al2O3光催化剂;(d)使用后的Fe2O3/Al2O3光催化剂
1 Jiao Yang, Liu Yang, Zhang Siwen , et al. Visible light driven α-Fe2O3 nanorod photocatalyst[J]. Journal of Nanoscience and Nanotechnology, 2014,14(9):7224.
2 Wei Zhiwei, Wei Xiucheng, Wang Suiyan , et al. Preparation and visible-light photocatalytic activity of α-Fe2O3/γ-Fe2O3, magnetic heterophase photocatalyst[J]. Materials Letters, 2014,118:107.
3 Zhang Yi, Xu Gang, Ou Ping , et al. Preparation and catalytic pro-perty of single crystal multiporous α-Fe2O3 nanorods[J]. Journal of Inorganic Materials, 2008,23(3):459(in Chinese).
4 张怡, 徐刚, 欧平 , 等. 单晶多孔α-Fe2O3纳米棒的制备及其催化性能[J]. 无机材料学报, 2008,23(3):459.
5 Zhou Weijia, He Wen, Ma Jingyun , et al. Biosynjournal of mesoporous organic-inorganic hybrid Fe2O3 with high photocatalytic activity[J]. Materials Science and Engineering C, 2009,29(6):1893.
6 Chowdhury M, Ntiribinyange M, Nyamayaro K , et al. Photocatalytic activities of ultra-small β-FeOOH and TiO2 heterojunction structure under simulated solar irradiation[J]. International Journal of Photoenergy, 2015,68:133.
7 Jo W K, Shin S H, Chun H H . Application of glass fiber-based N-doped titania under visible-light exposure for photocatalytic degradation of aromatic pollutants[J]. International Journal of Photoenergy, 2014,2014(20):1.
8 Chen Huawei, Ku Young, Kuo Yulin . Effect of Pt/TiO2 characte-ristics on temporal behavior of o-cresol decomposition by visible light-induced photocatalysis[J]. Water Research, 2007,41(10):2069.
9 Liu Chen, Li Youji, Xu Peng , et al. Controlled synjournal of ordered mesoporous TiO2-supported on activated carbon and pore-pore synergistic photocatalytic performance[J]. Materials Chemistry and Physics, 2015,149:69.
10 Torkian L, Amini M M, Amereh E . Sol-gel synjournaled silver doped TiO2 nanoparticles supported on NaX zeolite for photocatalytic applications[J]. Materials Technology, 2013,28(3):111.
11 Venkatesh R, Chakrabarty P K, Siladitya B , et al. Preparation of alumina fibre mats by a sol-gel spinning technique[J]. Ceramics International, 1999,25(6):539.
12 Venkatesh R, Ramanan S R . Influence of processing variables on the microstructure of sol-gel spun alumina fibres[J]. Materals Letters, 2002,55(3):189.
13 Mahapatra A, Mishra B G, Hota G . Synjournal of ultra-fine α-Al2O3 fibers via electrospinning method[J]. Ceramics International, 2011,37(7):2329.
14 Li Zhen, Sheng Jiayi, Wang Yan , et al. Enhanced photocatalytic activity and stability of alumina supported hematite for azo-dye degradation in aerated aqueous suspension[J]. Journal of Hazardous Materials, 2013,254:18.
15 Kim J H, Yoo S J, Kwak D H , et al. Characterization and application of electrospun alumina nanofibers[J]. Nanoscale Research Letters, 2014,9(1):44.
16 Um I C, Fang D, Hsiao B S , et al. Electro-spinning and electro-blowing of hyaluronic acid[J]. Biomacromolecules, 2004,5(4):1428.
17 Sinha-Ray S, Yarin A L, Pourdeyhimi B . The production of 100/400nm inner/outer diameter carbon tubes by solution blowing and carbonization of core-shell nanofibers[J]. Carbon, 2010,48(12):3575.
18 Luo C J, Stoyanov S D, Stride E , et al. Electrospinning versus fibre production methods: From specifics to technological convergence[J]. Chemical Society Reviews, 2012,41(13):4708.
19 Sedaghat A, Taheri-Nassaj E, Naghizadeh R . An alumina mat with a nano microstructure prepared by centrifugal spinning method[J]. Journal of Non-Crystalline Solids, 2006,352(26):2818.
20 Maneeratana V, Sigmund W M . Continuous hollow alumina gel fibers by direct electrospinning of an alkoxide-based precursor[J]. Chemical Engineering Journal, 2008,137(1):137.
21 Li Lei, Kang Weimin, Zhao Yixia , et al. Preparation of flexible ultra-fine Al2O3 fiber mats via the solution blowing method[J]. Ceramics International, 2015,41(1):409.
22 Li Lei, Kang Weimin, Zhuang Xupin , et al. A comparative study of alumina fibers prepared by electro-blown spinning (EBS) and solution blowing spinning (SBS)[J]. Materials Letters, 2015,160:533.
23 Wang Xia, Wang Jianqiang, Cui Zhentao , et al. Facet effect of α-Fe2O3 crystals on photocatalytic performance in the photo-fenton reaction[J]. RSC Advances, 2014,4(65):34387.
24 Li Bing, Dong Yongchun, Zou Chi , et al. Iron(Ⅲ)-alginate fiber complex as a highly effective and stable heterogeneous fenton photocatalyst for mineralization of organic dye[J]. Industrial and Engi-neering Chemistry Research, 2014,53(11):4199.
[1] 杨志强, 王振, 黄法礼, 易忠来, 蒋金洋. 纳米氧化铝提升海洋环境高速铁路桥梁混凝土结构服役寿命研究[J]. 材料导报, 2024, 38(7): 22060232-8.
[2] 褚洪岩, 汤金辉, 王群, 高李, 赵志豪. 采用纳米氧化铝制备高弹性模量超高性能混凝土的可行性研究[J]. 材料导报, 2024, 38(5): 22110073-6.
[3] 严鹏志, 范鹏贤, 王宇, 邢文政. 极端不利环境下氧化铝薄壁空心球粒抗冲击吸波性能试验研究[J]. 材料导报, 2024, 38(23): 23080113-6.
[4] 孟令欣, 邓伟, 胡思远, 冯嘉唯, 王照盼. Al2O3/PEI复合介质的高温储能特性研究[J]. 材料导报, 2024, 38(22): 23110021-8.
[5] 莫日格吉乐, 包莫日根, 白璐, 谢兵, 于晓丽, 曹鸿璋, 赵丹蕾, 赵斯琴. CeO2光催化原理及改性研究进展[J]. 材料导报, 2024, 38(21): 23080150-6.
[6] 李晗, 张恒, 赵珂, 杨自强, 甘益, 秦子轩, 翟倩, 甄琪. PLA/PEG@SiO2超细纤维包装材料及其日间辐射降温性能[J]. 材料导报, 2024, 38(20): 23070234-7.
[7] 颜蜀雋, 谭雅莉, 庞忠荣, 万鹏颖, 齐福刚. 六方氮化硼负载纳米氧化铝复合填料的制备及改性环氧涂层的防腐性能研究[J]. 材料导报, 2024, 38(20): 22110089-6.
[8] 徐宁, 杨恒, 熊传胜, 崔征, 蒋鹏, 刘璨. 钢筋混凝土环境中负载型阻锈剂的研究进展[J]. 材料导报, 2024, 38(2): 22050296-14.
[9] 陈恩光, 苏新清, 薛松柏, 陈旭东, 傅仁利, 张笑天, 程波, 王长虹, 王明伟. Ag-CuO-NiO-LiAlSiO4复合钎料空气反应钎焊GH3128/Al2O3接头组织及性能[J]. 材料导报, 2024, 38(2): 22090003-6.
[10] 武宏, 邵明增, 杨洪波. 涂镀铝+微弧氧化工艺制备复合涂层研究进展[J]. 材料导报, 2024, 38(14): 23120007-9.
[11] 钱红梅, 洪铤锴. N-S共掺杂CN/NS-TiO2纳米复合材料的制备及可见光催化性能[J]. 材料导报, 2023, 37(S1): 22110216-7.
[12] 杨瑞强, 汪永清, 常启兵, 周健儿. 烧结助剂MgO-Al2O3-SiO2-ZrO2提高管式支撑体的耐碱腐蚀性能研究[J]. 材料导报, 2023, 37(S1): 23040042-9.
[13] 张进治, 谢亮. 复合光催化剂CoFe2O4/BiVO4/电气石的超声-光催化研究[J]. 材料导报, 2023, 37(6): 21090095-6.
[14] 盛蕊, 唐婷婷, 田敏, 袁舒慧, 张苏, 范壮军. 耐热酚醛树脂基活性炭的制备及其超级电容器性能研究[J]. 材料导报, 2023, 37(4): 21040224-7.
[15] 孙彬, 高圣伦, 郝明欣, 曹光明, 李志峰. 小压下冷轧对热轧带钢氧化铁皮氢气还原动力学的影响[J]. 材料导报, 2023, 37(4): 21090067-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed