Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (2): 207-212    https://doi.org/10.11896/j.issn.1005-023X.2018.02.010
  物理   材料研究 |材料 |
静电溶液喷射Fe2O3/Al2O3超细纤维负载型光催化剂的制备及催化性能研究
李磊1,2,程博闻2,康卫民2,马晓光2,庄旭品2
1 天津工业大学材料科学与工程学院,天津 300387
2 天津工业大学省部共建分离膜与膜过程国家重点实验室,天津 300387
Fe2O3 Photocatalyst Supported on Ultra-fine Fibrous Al2O3 Prepared via Electro- blown Spinning (EBS) with an Application to Organic Dye Degradation
Lei LI1,2,Bowen CHENG2,Weimin KANG2,Xiaoguang MA2,Xupin ZHUANG2
1 School of Materials Science and Engineering,Tianjin Polytechnic University,Tianjin 300387
2 State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387
下载:  全 文 ( PDF ) ( 3253KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

利用静电溶液喷射法,结合浸渍焙烧工艺成功制备了Fe2O3/Al2O3超细纤维负载型光催化剂。采用SEM、EDS、XRD等技术对其进行表征,以酸性大红(RR 195)的光催化降解为目标反应,评价其光催化活性。结果表明,通过静电溶液喷射方法制备的氧化铝超细纤维毡柔性较好,纤维平均直径为3.78 μm。光催化实验表明,当煅烧温度为500 ℃、铁负载量为195.5 mg/g时,催化剂的性能最佳。在紫外光照及H2O2存在的条件下,反应120 min后,该催化剂对RR 195的脱色率达到95%,3次循环反应后,120 min内染料的脱色率可达70%。反应后该催化剂仍然保持良好的纤维形态,易于分离,避免了二次污染。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李磊
程博闻
康卫民
马晓光
庄旭品
关键词:  静电溶液喷射  氧化铝  超细纤维  氧化铁  负载  光催化剂    
Abstract: 

Ultra-fine fibrous Al2O3 supported Fe2O3 photocatalyst was prepared by an electro-blown spinning (EBS) method combined with impregnation-calcination process, and characterized by techniques such as SEM,EDS and XRD. Photocatalytic degradation of Reactive Red 195 (RR 195) in aqueous solution was used as a probe reaction to evaluate the product’s photocatalytic activity. The results showed that flexible and ultra-fine fibrous alumina mat, which is appropriate for photocatalyst supporter and has an average diameter of 3.78 μm, can be obtained via electro-blown spinning method. The catalytic experimental results suggested that the optimum photocatalytic performance of the photocatalyst was achieved when the sintering temperature was 500 ℃ and the iron loaded content was 195.5 mg/g. The dye decoloration rate reached 95% within 120 min for the first run with H2O2 and UV light, and it can be maintained 70% after three rounds. Moreover,this photocatalyst still maintained good fabric morphology after reaction and was easier to be separated from dye solution, which could avoid the secondary pollution effectively.

Key words:  electro-blown spinning    alumina    ultra-fine fiber    ferric oxide    supported    photocatalyst
               出版日期:  2018-01-25      发布日期:  2018-01-25
ZTFLH:  TF123  
基金资助: 国家自然科学基金(51678411);天津自然科学基金(13JCZDJC32500)
引用本文:    
李磊,程博闻,康卫民,马晓光,庄旭品. 静电溶液喷射Fe2O3/Al2O3超细纤维负载型光催化剂的制备及催化性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 207-212.
Lei LI,Bowen CHENG,Weimin KANG,Xiaoguang MA,Xupin ZHUANG. Fe2O3 Photocatalyst Supported on Ultra-fine Fibrous Al2O3 Prepared via Electro- blown Spinning (EBS) with an Application to Organic Dye Degradation. Materials Reports, 2018, 32(2): 207-212.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.02.010  或          http://www.mater-rep.com/CN/Y2018/V32/I2/207
图1  (a)静电溶液喷射实验装置示意图;(b)Fe2O3/Al2O3光催化剂制备原理图
图2  (a)EBS氧化铝纤维毡的SEM图(插图为溶液喷射氧化铝纤维SEM图);(b)EBS氧化铝纤维的直径分布图;(c)Fe2O3/Al2O3光催化剂的SEM图;(d)Fe2O3/Al2O3光催化剂的EDS图(电子版为彩图)
图3  (a)EBS氧化铝纤维的N2等温吸附曲线(插图为纤维孔径分布)和(b)EBS氧化铝纤维毡的孔径分布及平均孔径
图4  (a)EBS氧化铝纤维和(b)不同煅烧温度下催化剂的XRD谱
图5  不同煅烧温度下催化剂的光催化曲线
图6  不同铁负载量催化剂的(a)XRD谱和(b)光催化曲线
图7  Fe2O3/Al2O3超细纤维负载型催化剂的重复利用曲线
图8  Fe2O3/Al2O3超细纤维负载型催化剂对染料降解反应的催化作用判别:(a)0.6 g催化剂,暗态;(b)0.6 g催化剂,可见光;(c)0.6 g催化剂,紫外光;(d)0.6 g催化剂,2 mmol/L H2O2,紫外光
图9  (a)EBS氧化铝纤维毡;(b)经折叠的氧化铝纤维毡;(c)Fe2O3/Al2O3光催化剂;(d)使用后的Fe2O3/Al2O3光催化剂
1 Jiao Yang, Liu Yang, Zhang Siwen , et al. Visible light driven α-Fe2O3 nanorod photocatalyst[J]. Journal of Nanoscience and Nanotechnology, 2014,14(9):7224.
2 Wei Zhiwei, Wei Xiucheng, Wang Suiyan , et al. Preparation and visible-light photocatalytic activity of α-Fe2O3/γ-Fe2O3, magnetic heterophase photocatalyst[J]. Materials Letters, 2014,118:107.
3 Zhang Yi, Xu Gang, Ou Ping , et al. Preparation and catalytic pro-perty of single crystal multiporous α-Fe2O3 nanorods[J]. Journal of Inorganic Materials, 2008,23(3):459(in Chinese).
4 张怡, 徐刚, 欧平 , 等. 单晶多孔α-Fe2O3纳米棒的制备及其催化性能[J]. 无机材料学报, 2008,23(3):459.
5 Zhou Weijia, He Wen, Ma Jingyun , et al. Biosynjournal of mesoporous organic-inorganic hybrid Fe2O3 with high photocatalytic activity[J]. Materials Science and Engineering C, 2009,29(6):1893.
6 Chowdhury M, Ntiribinyange M, Nyamayaro K , et al. Photocatalytic activities of ultra-small β-FeOOH and TiO2 heterojunction structure under simulated solar irradiation[J]. International Journal of Photoenergy, 2015,68:133.
7 Jo W K, Shin S H, Chun H H . Application of glass fiber-based N-doped titania under visible-light exposure for photocatalytic degradation of aromatic pollutants[J]. International Journal of Photoenergy, 2014,2014(20):1.
8 Chen Huawei, Ku Young, Kuo Yulin . Effect of Pt/TiO2 characte-ristics on temporal behavior of o-cresol decomposition by visible light-induced photocatalysis[J]. Water Research, 2007,41(10):2069.
9 Liu Chen, Li Youji, Xu Peng , et al. Controlled synjournal of ordered mesoporous TiO2-supported on activated carbon and pore-pore synergistic photocatalytic performance[J]. Materials Chemistry and Physics, 2015,149:69.
10 Torkian L, Amini M M, Amereh E . Sol-gel synjournaled silver doped TiO2 nanoparticles supported on NaX zeolite for photocatalytic applications[J]. Materials Technology, 2013,28(3):111.
11 Venkatesh R, Chakrabarty P K, Siladitya B , et al. Preparation of alumina fibre mats by a sol-gel spinning technique[J]. Ceramics International, 1999,25(6):539.
12 Venkatesh R, Ramanan S R . Influence of processing variables on the microstructure of sol-gel spun alumina fibres[J]. Materals Letters, 2002,55(3):189.
13 Mahapatra A, Mishra B G, Hota G . Synjournal of ultra-fine α-Al2O3 fibers via electrospinning method[J]. Ceramics International, 2011,37(7):2329.
14 Li Zhen, Sheng Jiayi, Wang Yan , et al. Enhanced photocatalytic activity and stability of alumina supported hematite for azo-dye degradation in aerated aqueous suspension[J]. Journal of Hazardous Materials, 2013,254:18.
15 Kim J H, Yoo S J, Kwak D H , et al. Characterization and application of electrospun alumina nanofibers[J]. Nanoscale Research Letters, 2014,9(1):44.
16 Um I C, Fang D, Hsiao B S , et al. Electro-spinning and electro-blowing of hyaluronic acid[J]. Biomacromolecules, 2004,5(4):1428.
17 Sinha-Ray S, Yarin A L, Pourdeyhimi B . The production of 100/400nm inner/outer diameter carbon tubes by solution blowing and carbonization of core-shell nanofibers[J]. Carbon, 2010,48(12):3575.
18 Luo C J, Stoyanov S D, Stride E , et al. Electrospinning versus fibre production methods: From specifics to technological convergence[J]. Chemical Society Reviews, 2012,41(13):4708.
19 Sedaghat A, Taheri-Nassaj E, Naghizadeh R . An alumina mat with a nano microstructure prepared by centrifugal spinning method[J]. Journal of Non-Crystalline Solids, 2006,352(26):2818.
20 Maneeratana V, Sigmund W M . Continuous hollow alumina gel fibers by direct electrospinning of an alkoxide-based precursor[J]. Chemical Engineering Journal, 2008,137(1):137.
21 Li Lei, Kang Weimin, Zhao Yixia , et al. Preparation of flexible ultra-fine Al2O3 fiber mats via the solution blowing method[J]. Ceramics International, 2015,41(1):409.
22 Li Lei, Kang Weimin, Zhuang Xupin , et al. A comparative study of alumina fibers prepared by electro-blown spinning (EBS) and solution blowing spinning (SBS)[J]. Materials Letters, 2015,160:533.
23 Wang Xia, Wang Jianqiang, Cui Zhentao , et al. Facet effect of α-Fe2O3 crystals on photocatalytic performance in the photo-fenton reaction[J]. RSC Advances, 2014,4(65):34387.
24 Li Bing, Dong Yongchun, Zou Chi , et al. Iron(Ⅲ)-alginate fiber complex as a highly effective and stable heterogeneous fenton photocatalyst for mineralization of organic dye[J]. Industrial and Engi-neering Chemistry Research, 2014,53(11):4199.
[1] 冉涛, 张骞, 黎邦鑫, 刘旸, 李筠连. g-C3N4/泡沫镍整体式光催化剂的构建及光氧化去除NO[J]. 材料导报, 2019, 33(z1): 337-342.
[2] 熊德华, 邓砚文, 杜子娟, 张晴晴, 李宏. CuMnO2/TiO2复合光催化剂增效催化降解亚甲基蓝[J]. 材料导报, 2019, 33(8): 1262-1267.
[3] 韩贵华, 张宝林, 苏礼超, 黄银平, 范子梁, 赵应征. 二肉豆蔻酰磷脂酰胆碱修饰的氧化铁纳米粒子在PC-12细胞内的分布[J]. 材料导报, 2019, 33(6): 1047-1051.
[4] 朱继红, 曾碧榕, 罗伟昂, 袁丛辉, 陈凌南, 毛杰, 戴李宗. Fe3O4@P(St-co-OBEG)核壳结构微球负载银/铂纳米粒子复合催化剂的构筑及催化性能[J]. 材料导报, 2019, 33(4): 571-576.
[5] 刘德坤, 刘航, 杨柳, 罗永明, 韩彩芸. 镧、铈改性介孔氧化铝对氟离子的吸附[J]. 材料导报, 2019, 33(4): 590-594.
[6] 何秀兰, 杜闫, 巩庆东, 郑威, 柳军旺. 凝胶-发泡法制备多孔Al2O3陶瓷及其力学性能[J]. 材料导报, 2019, 33(4): 607-610.
[7] 田响宇, 尚心莲, 李红霞, 王新福, 刘国齐, 杨文刚, 于建宾. 在内衬材料中添加氢氧化铝提升长水口的抗热震性:内衬材料显微组织与性能及长水口颈部最大热应力数学模型[J]. 材料导报, 2019, 33(4): 611-616.
[8] 张宇, 王敏, 周鑫, 杨光俊, 柴天煜, 朱彤. Bi2MoO6/BiVO4异质结光催化剂的制备及性能[J]. 材料导报, 2019, 33(10): 1597-1601.
[9] 祁渊, 龚俊, 杨东亚, 王宏刚, 高贵, 任俊芳, 陈生圣. 纳米Al2O3填料增强PEEK-PTFE复合材料基于环-块摩擦结构的摩擦过程研究[J]. 材料导报, 2019, 33(10): 1756-1761.
[10] 张腾, 唐天宇, 侯仰龙. 面向锂硫电池的高负载量碳硫复合正极材料研究进展[J]. 材料导报, 2019, 33(1): 90-102.
[11] 张翔, 甘春雷, 黎小辉, 张辉, 郑开宏, 农登. 氧化铝纤维含量对陶瓷基摩擦材料性能的影响[J]. 材料导报, 2018, 32(20): 3517-3523.
[12] 王辉, 李士君, 王梅, 裴彦博, 胡绍争. 载银g-C3N4(Ⅰ)/g-C3N4(Ⅱ)同素异质结催化剂的制备及光催化固氮产氨性能[J]. 材料导报, 2018, 32(20): 3496-3503.
[13] 李志峰,何永全,曹光明,汤军舰,刘振宇. 热轧钢材氧化铁皮的高温形变机理研究[J]. 《材料导报》期刊社, 2018, 32(2): 259-262.
[14] 王春来,李钒,杨焜,刘长军,田丰. 碳量子点-二氧化钛复合光催化剂的研究进展[J]. 材料导报, 2018, 32(19): 3348-3357.
[15] 郭军红, 许芬, 郭永亮, 王文华, 慕波, 杨保平, 崔锦峰. Al(OH)3-磷杂化聚合物/聚苯乙烯复合材料的协同阻燃效应[J]. 《材料导报》期刊社, 2018, 32(14): 2497-2502.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed