Please wait a minute...
材料导报  2024, Vol. 38 Issue (22): 23110021-8    https://doi.org/10.11896/cldb.23110021
  高分子与聚合物基复合材料 |
Al2O3/PEI复合介质的高温储能特性研究
孟令欣1, 邓伟1,2,*, 胡思远1, 冯嘉唯1, 王照盼1
1 哈尔滨理工大学材料科学与化学工程学院,哈尔滨 150040
2 哈尔滨理工大学工程电介质及其应用教育部重点实验室,哈尔滨 150080
Research on High Temperature Energy Storage Characteristics of Al2O3/PEI Dielectric Composites
MENG Lingxin1, DENG Wei1,2,*, HU Siyuan1, FENG Jiawei1, WANG Zhaopan1
1 School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China
2 Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, China
下载:  全 文 ( PDF ) ( 5514KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高温储能的电介质材料对电子电力设备容量和可靠性的提升、体积的减小具有重要意义。以耐高温的聚醚酰亚胺(PEI)为基体,宽带隙的氧化铝(Al2O3)为填料,通过溶液共混再流延制备Al2O3/PEI复合薄膜,对比研究了Al2O3纳米粒子(AO NPs)和静电纺Al2O3纤维(AO NFs)对复合薄膜介电储能特性的影响。结果表明,Al2O3能够兼顾提升PEI复合薄膜的极化强度和击穿场强,降低电导率。相较于AO NPs,AO NFs在PEI基体中的分散更为均匀,可在极低填料含量下获得具有优异储能特性的Al2O3/PEI复合薄膜。当填料含量为0.5%(如无特别说明,均为体积分数)时,AO NFs/PEI在25 ℃的储能密度达5.80 J/cm3,分别是0.50AO NPs/PEI和纯PEI薄膜的1.2倍和2.5倍。150 ℃下0.50AO NFs/PEI仍表现出优异的储能特性,储能密度和充放电效率分别为4.36 J/cm3和75%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孟令欣
邓伟
胡思远
冯嘉唯
王照盼
关键词:  聚醚酰亚胺  氧化铝纤维  高温  介电性能  储能密度    
Abstract: High temperature energy storage dielectric materials are of great significance for improving the capacity and reliability of electronic and power equipment, as well as reducing their volume. In this work, aluminum oxide/polyether imide (Al2O3/PEI) composite films were obtained via solution blending and casting method using high-temperature resistant PEI as the matrix and Al2O3 with wide bandgap as the fillers. The effects of alumina nanoparticles (AO NPs) and electrospun alumina nanofibers (AO NFs) on the dielectric energy storage characteristics of the composite films were studied comparatively. The results show that Al2O3 can improve polarization and breakdown strength simultaneously, as well as decrease conductivity. Compared with AO NPs, AO NFs are more evenly dispersed in the PEI matrix, thus obtaining high energy storage Al2O3/PEI composite films at extremely low filler content. When the filler content is 0.50%, the energy storage density of AO NFs/PEI at 25 ℃ reaches 5.80 J/cm3, which is 1.2 and 2.5 times higher than that of 0.50AO NPs/PEI and pure PEI films, respectively. Furthermore, 0.50AO NFs/PEI composite films still exhibit excellent energy storage characteristics at 150 ℃, with energy storage density and charge discharge efficiency of 4.36 J/cm3 and 75%, respectively.
Key words:  polyetherimide    alumina nanofibers    high temperature    dielectric property    energy storage density
出版日期:  2024-11-25      发布日期:  2024-11-22
ZTFLH:  TB332  
基金资助: 黑龙江省自然科学基金(LH2019E059);国家自然科学基金(U20A20307)
通讯作者:  *邓伟,工学博士,哈尔滨理工大学材料科学与化学工程学院副教授、硕士研究生导师。主持及参与黑龙江省自然科学基金项目、国家自然科学基金项目、山东省重点研发计划项目等。目前主要从事聚合物基复合介电材料和高压电缆绝缘材料等方面的研究工作。发表SCI收录论文20余篇,包括Journal of Colloid and Interface Science、European Polymer Journal等。weideng@hrbust.edu.cn   
作者简介:  孟令欣,2020年6月毕业于哈尔滨理工大学材料科学与工程学院,获得工学学士学位。现为哈尔滨理工大学材料科学与化学工程学院硕士研究生,在邓伟副教授的指导下进行研究。目前主要研究领域为聚合物基高温介电储能复合材料。
引用本文:    
孟令欣, 邓伟, 胡思远, 冯嘉唯, 王照盼. Al2O3/PEI复合介质的高温储能特性研究[J]. 材料导报, 2024, 38(22): 23110021-8.
MENG Lingxin, DENG Wei, HU Siyuan, FENG Jiawei, WANG Zhaopan. Research on High Temperature Energy Storage Characteristics of Al2O3/PEI Dielectric Composites. Materials Reports, 2024, 38(22): 23110021-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23110021  或          http://www.mater-rep.com/CN/Y2024/V38/I22/23110021
1 Diao C, Wang H, Wang B, et al. Journal of Materials Science:Materials in Electronics, 2022, 33(27), 21199.
2 Yang Z, Yue D, Yao Y, et al. Polymers, 2022, 14(6), 1160.
3 Hao X. Journal of Advanced Dielectrics, 2013, 3(1), 1330001.
4 Shen Y, Zhang X, Li M, et al. National Science Review, 2017, 4(1), 23.
5 Li Q, Li M X. High Voltage Engineering, 2021, 47(9), 3105 (in Chinese).
李琦, 李曼茜. 高电压技术, 2021, 47(9), 3105.
6 Li Q, Yao F Z, Liu Y, et al. Annual Review of Materials Research, 2018, 48, 219.
7 Liu W F, Liu B, Cheng L. High Voltage Engineering, 2023, 49(3), 1046 (in Chinese).
刘文凤, 刘标, 程璐. 高电压技术, 2023, 49(3), 1046.
8 Wang P. Material of linear polymer and its composite dielectric energy storage performance study on high temperature. Master's Thesis, Hangzhou Dianzi University, China, 2022 (in Chinese).
王萍. 线性聚合物及其复合材料的高温介电储能性能研究. 硕士学位论文, 杭州电子科技大学, 2022.
9 Zhou Y, Li Q, Dang B, et al. Advanced Materials, 2018, 30(49), 1805672.
10 Zhang T D, Yang L Y, Zhang H C, et al. Proceedings of the CSEE, 2021, 41(5), 1526 (in Chinese).
张天栋, 杨连印, 张昌海, 等. 中国电机工程学报, 2021, 41(5), 1526.
11 Yang M, Ren W, Guo M, et al. Small, 2022, 18(50), 2205247.
12 Miao W, Chen H, Pan Z, et al. Composites Science and Technology, 2021, 201, 108501.
13 Ni X, Lin J, Yuan Y, et al. ACS Applied Nano Materials, 2023, 6(13), 12588.
14 Ren L, Yang L, Zhang S, et al. Composites Science and Technology, 2021, 201, 108528.
15 Yan J, Wang J, Zeng J, et al. Journal of Materials Chemistry C, 2022, 10(36), 13157.
16 Zhu L, Zhang Y, Xu W, et al. Composites Science and Technology, 2022, 223, 109421.
17 Zhang C S, Zhao F, Zhang J J, et al. Acta Chimica Sinica, 1999(3), 275 (in Chinese).
张长拴, 赵峰, 张继军, 等. 化学学报, 1999(3), 275.
18 Shang H, Ye P F, Yan H Z, et al. Vacuum Electronics, 2018(1), 33 (in Chinese).
商辉, 叶鹏飞, 闫洪振, 等. 真空电子技术, 2018(1), 33.
19 Rodaev V V, Zhigachev A O, Golovin Y I. Ceramics International, 2017, 43(17), 16023.
20 Tobin J S, Turinske A J, Stojilovic N, et al. Current Applied Physics, 2012, 12(3), 919.
21 Su Y, Weng L, Wang X M, et al. Materials Reports, 2023, 37(11), 194 (in Chinese).
苏宇, 翁凌, 王小明, 等. 材料导报, 2023, 37(11), 194.
22 Fan Z, Zhang Y, Jiang Y, et al. Journal of Materials Research and Technology, 2022, 18, 4367.
23 Fan M, Hu P, Dan Z, et al. Journal of Materials Chemistry A, 2020, 8(46), 24536.
24 Li H, Ai D, Ren L, et al. Advanced Materials, 2019, 31(23), 1900875.
25 Ai D, Li H, Zhou Y, et al. Advanced Energy Materials, 2020, 10(16), 1903881.
26 Li H, Ren L, Ai D, et al. InfoMat, 2020, 2(2), 389.
27 Zhang T, Yang L, Ruan J, et al. Macromolecular Materials and Engineering, 2021, 306(12), 2100514.
28 Li X, Luo H, Yang C, et al. ACS Applied Materials & Interfaces, 2023, 15(35), 41828.
29 Ding X, Pan Z, Zhang Y, et al. Advanced Materials Interfaces, 2022, 9(28), 2201100.
30 Ren W, Pan J, Dan Z, et al. Chemical Engineering Journal, 2021, 420, 127614.
31 Fan M Z, Sun B Z, Jiang J Y, et al. Rare Metals, 2023, 42(6), 1912.
32 Feng Y, Zhou Y, Zhang T, et al. Energy Storage Materials, 2020, 25, 180.
[1] 孙华键, 郭德林, 李如庆, 侯良朋, 杨明辉, 孙金钊, 殷凤仕. 改性MCrAlY涂层的研究进展[J]. 材料导报, 2024, 38(7): 22120155-10.
[2] 孙涛, 王辉, 张蕾, 刘晓英, 赵宏刚, 蒋伟, 成鑫磊, 何小涌. 基于折减因子的奥氏体不锈钢螺栓高温应力-应变模型[J]. 材料导报, 2024, 38(5): 23080049-9.
[3] 杨菊香, 贾园, 马文建, 李朋娜, 屈颖娟. 互穿网络结构的二氧化硅/环氧树脂复合材料的制备及介电性能研究[J]. 材料导报, 2024, 38(5): 22080082-6.
[4] 李杰, 胡祖明, 于俊荣, 王彦, 诸静. 聚对苯二甲酰对苯二胺气凝胶纤维的制备与性能[J]. 材料导报, 2024, 38(2): 22080102-6.
[5] 毛鹏燕, 赵晖, 李宏达, 邰凯平. 碳纳米管-铜复合薄膜材料的抗辐照损伤性能研究[J]. 材料导报, 2024, 38(19): 22120135-6.
[6] 李力敏, 党莹樱, 黄锦阳, 刘鹏, 李沛, 鲁金涛, 袁勇. 长期时效对镍铁基高温合金组织和冲击韧性的影响[J]. 材料导报, 2024, 38(18): 23050036-6.
[7] 王玉锋, 付前刚, 杨俊, 张华, 杨岩. 热障涂层对DD6单晶燃气热腐蚀及力学性能的影响[J]. 材料导报, 2024, 38(18): 23070037-6.
[8] 王同波, 李伯龙, 亓鹏, 王云鹏, 莫永达, 娄花芬. 含铒近α型高温钛合金中α相的动/静态球化机制[J]. 材料导报, 2024, 38(17): 23100083-6.
[9] 李晓, 赵莹莹, 故丽孜巴·阿不都热西提, 贾兴文, 钱觉时. 磷酸镁水泥高温性能研究进展[J]. 材料导报, 2024, 38(17): 23120217-8.
[10] 张鹏伟, 宋惠, 白慧萍, 易剑, 江南, 西村一仁. 太赫兹行波管用金刚石输能窗研究进展[J]. 材料导报, 2024, 38(16): 22120014-9.
[11] 程春龙, 陈正, 陈长玖, 柳力晨, 乐启炽. 镁合金表面高温氧化膜CO2矿化处理研究[J]. 材料导报, 2024, 38(16): 23040159-6.
[12] 吴妹, 徐晓磊, 李晓, 刘玖红, 于光睿, 段好东, 韩玉玺, 于青, 王忠卫. 甲基取代二芳基氧化膦阻燃改性环氧树脂的研究[J]. 材料导报, 2024, 38(16): 23040213-10.
[13] 高磊, 屈星海, 吴一栋, 陈晶阳, 肖程波, 惠希东. K439B镍基铸造高温合金800 ℃长期时效过程中碳化物的演变规律[J]. 材料导报, 2024, 38(15): 23110091-5.
[14] 马云路, 杨劼人, 刘泽栋, 陈瑞润. TiAl金属间化合物定向技术研究进展[J]. 材料导报, 2024, 38(15): 23100177-12.
[15] 贾建, 罗俊鹏, 张浩鹏, 闫婷, 侯琼, 张义文. W元素在新型镍基粉末高温合金中的强化作用[J]. 材料导报, 2024, 38(15): 23110103-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed