Research on CO2 Mineralization of High Temperature Oxide Film on Magnesium Alloy Surface
CHENG Chunlong1, CHEN Zheng1, CHEN Changjiu1, LIU Lichen2, LE Qichi2,*
1 School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China 2 Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China
Abstract: The high temperature oxide film of the AZ80-0.38Nd (wt%) alloy was mineralized with CO2 to improve its property. The morphology, microstructure and composition of the oxide film before and after CO2 mineralization were observed and analyzed. The corrosion protection performance of the oxide film before and after CO2 mineralization were investigated by immersion and electrochemical tests. The results showed that cracks and holes appeared on the high temperature oxide film of AZ80-0.38Nd alloy. While CO2 mineralization treatment could eliminate cracks and holes, resulting in densification of the oxide film. The mineralized film consisted of rod-like MgCO3·3H2O and lamellar 4MgCO3·Mg(OH)2·4H2O was constructed on the oxide film. Besides, compared with the oxide film, the mineralized film increased the corrosion potential (Ecorr) of the alloy from -1.41 VSCE to -1.33 VSCE, and reduced the corrosion current density (icorr) of the alloy from 1.62×10-4 A/cm2 to 2.47×10-5 A/cm2. In addition, the mineralized film can also transform the local corrosion of the alloy into uniform corrosion, showing excellent corrosion protection performance.
通讯作者:
*乐启炽,东北大学材料电磁过程研究教育部重点实验室教授、博士研究生导师。1990年本科毕业于东北大学有色金属冶金专业,并于2001年获得材料加工专业博士学位。目前主要从事镁合金凝固与外场调控、镁合金成形理论与工艺、高性能镁合金与镁基复合材料以及镁合金电化学与表面工程的研究工作。在Journal of Power Sources、Ultrasonics Sonochemistry、Corrosion Science、《金属学报》等国内外重要学术期刊和国际会议上发表学术论文300余篇,其中SCI收录180余篇;主编教材1部,合作撰写专著4部;已授权专利50余项。qichil@mail.neu.cn
作者简介: 程春龙,2016年6月、2022年6月分别于青海大学和东北大学获得工学学士学位和博士学位,现为中国矿业大学材料与物理学院师资博士后。目前主要从事阻燃、抗高温氧化与耐蚀镁合金的开发与研究。在Corrosion Science、Applied Surface Science、Journal of Magnesium and Alloys、Materials Chemistry and Physics等期刊已发表论文10余篇。
引用本文:
程春龙, 陈正, 陈长玖, 柳力晨, 乐启炽. 镁合金表面高温氧化膜CO2矿化处理研究[J]. 材料导报, 2024, 38(16): 23040159-6.
CHENG Chunlong, CHEN Zheng, CHEN Changjiu, LIU Lichen, LE Qichi. Research on CO2 Mineralization of High Temperature Oxide Film on Magnesium Alloy Surface. Materials Reports, 2024, 38(16): 23040159-6.
1 Jiang B, Liu W, Dong H, et al. Journal of Aeronautical Materials, 2018, 38(4), 14 (in Chinese). 蒋斌, 刘文君, 董含武, 等. 航空材料学报, 2018, 38(4), 14. 2 Bao J, Li Q, Chen X, et al. Materials Reports, 2022, 36(10), 1 (in Chinese). 鲍键, 李全安, 陈晓亚, 等. 材料导报, 2022, 36(10), 1. 3 Song Y, Fu H, Wang Z, et al. Materials Reports, 2019, 33(3), 834 (in Chinese). 宋雨来, 付洪德, 王震, 等. 材料导报, 2019, 33(3), 834. 4 Liu Z, Huang H, Li L, et al. MW Metal Cutting, DOI:10.3969/j.issn.1674-1641.2022.01.014 (in Chinese). 刘志峰, 黄海鸿, 李磊, 等. 金属加工(冷加工), DOI:10. 3969/j. issn. 1674-1641. 2022. 01. 014. 5 Joun M S, Ji S M, Yoo J D, et al. Journal of Manufacturing Processes, 2022, 84, 764. 6 Xu W Q, Birbilis N, Sha G, et al. Nature Materials, 2015, 14, 1229. 7 Jin Y, Wang K, Wang W, et al. Materials Characterization, 2019, 150, 52. 8 Lotfpour M, Emamy M, Dehghanian C, et al. Journal of Materials Engineering & Performance, 2017, 26(5), 1. 9 Atrens A, Song G L, Liu M, et al. Advanced Engineering Materials, 2015, 17, 400. 10 Molaei M, Babaei K, Fattah-alhosseini A. Journal of Magnesium and Alloys, 2021, 9, 1164. 11 Maurya R, Siddiqui A R, Balani K. Applied Surface Science, 2018, 443, 429. 12 Wu Y, Wang Y, Tian S, et al. Applied Surface Science, 2019, 470, 430. 13 Wu Y, Wang Y, Tian S, et al. Colloids and Surfaces B: Biointerfaces, 2020, 190, 110901. 14 Wei D, Wang J, Liu Y, et al. Chemical Engineering Journal, 2021, 404, 126444. 15 Chu J H, Tong L B, Zhang J B, et al. Carbon, 2019, 141, 154. 16 Chen Y, Wu L, Yao W, et al. Journal of Industrial and Engineering Chemistry, 2023, 117, 319. 17 Chen Y, Wu L, Yao W, et al. Surface & Coatings Technology, 2022, 451, 129032. 18 Wang Y, Liu B, Zhao X, et al. Nature Communications, 2018, 9, 1. 19 Luo X T, Wei Y K, Shen J H, et al. Journal of Magnesium and Alloys, 2023, https://doi. org/10. 1016/j. jma. 2022. 12. 011. 20 Cheng C, Le Q, Hu C, et al. Applied Surface Science, 2022, 600, 153970. 21 Liu Y J. Study on mineralization mechanism and gelling property of CO2 from waste containing calcium and magnesium. Ph. D. Thesis, China General Research Institute of Building Materials Science, China, 2022 (in Chinese). 刘姚君. 含钙镁废弃物CO2矿化机制及其产物胶凝性能研究. 博士学位论文, 中国建筑材料科学研究总院, 2022. 22 Cheng C, Chen Z, Fan Y, et al. Materials Letters, 2023, 347, 134660. 23 Heyns A M, Prinsloo L C, Range K J, et al. Journal of Solid State Chemistry 1998, 137, 33. 24 Hopkinson L, Kristova P, Rutt K, et al. Geochimica Et Cosmochimica Acta, 2012, 76, 1. 25 Varadharajan R, Baskaran D. Journal of Nanostructures, 2017, 7, 189. 26 Saddeek Y B. Physica B Condensed Matter, 2011, 406(3), 562. 27 Cheng W, Fang L, Cheng H, et al. Journal of Industrial and Engineering Chemistry, 2019, 76, 215. 28 Zhang C Y. Controlled growth of MgCO3·3H2O during CO2 mineralization. Ph. D. Thesis, Shanxi University, China, 2018 (in Chinese). 张翠钰. MgCO3·3H2O在CO2矿化过程中的可控生长. 博士学位论文, 山西大学, 2018. 29 Yan Pingke, Zhang Xu, Gao Yujuan, et al. Bulletin of the Chinese Ceramic Society, 2016, 35(3), 700 (in Chinese). 闫平科, 张旭, 高玉娟, 等. 硅酸盐通报, 2016, 35(3), 700.