Please wait a minute...
材料导报  2024, Vol. 38 Issue (16): 23040159-6    https://doi.org/10.11896/cldb.23040159
  金属与金属基复合材料 |
镁合金表面高温氧化膜CO2矿化处理研究
程春龙1, 陈正1, 陈长玖1, 柳力晨2, 乐启炽2,*
1 中国矿业大学材料与物理学院,江苏 徐州 221116
2 东北大学材料电磁过程研究教育部重点实验室,沈阳 110819
Research on CO2 Mineralization of High Temperature Oxide Film on Magnesium Alloy Surface
CHENG Chunlong1, CHEN Zheng1, CHEN Changjiu1, LIU Lichen2, LE Qichi2,*
1 School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
2 Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China
下载:  全 文 ( PDF ) ( 17875KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为改善镁合表面高温氧化膜性能,采用CO2矿化技术对AZ80-0.38Nd (质量分数/%,下同)合金表面高温氧化膜进行了处理。对比考察了合金氧化膜CO2矿化处理前后的微观形貌、结构及物相,并采用浸泡和电化学测试技术研究了膜层的腐蚀防护性能。结果表明,AZ80-0.38Nd合金表面高温氧化膜具有典型的裂纹与孔洞缺陷,CO2矿化处理很好地修复了合金表面高温氧化膜缺陷,提高了氧化膜层的致密度,并在合金表面构筑由棒状MgCO3·3H2O和层片状4MgCO3·Mg(OH)2·4H2O组成的矿化膜。相比于氧化膜,矿化膜可将合金自腐蚀电位(Ecorr)由-1.41 VSCE提高至-1.33 VSCE,将合金自腐蚀电流密度(icorr)由1.62×10-4 A/cm2减小至2.47×10-5 A/cm2。此外,矿化膜还能将合金局部腐蚀转变为均匀腐蚀,呈现优异的腐蚀防护性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
程春龙
陈正
陈长玖
柳力晨
乐启炽
关键词:  镁合金  高温氧化  二氧化碳矿化  腐蚀防护    
Abstract: The high temperature oxide film of the AZ80-0.38Nd (wt%) alloy was mineralized with CO2 to improve its property. The morphology, microstructure and composition of the oxide film before and after CO2 mineralization were observed and analyzed. The corrosion protection performance of the oxide film before and after CO2 mineralization were investigated by immersion and electrochemical tests. The results showed that cracks and holes appeared on the high temperature oxide film of AZ80-0.38Nd alloy. While CO2 mineralization treatment could eliminate cracks and holes, resulting in densification of the oxide film. The mineralized film consisted of rod-like MgCO3·3H2O and lamellar 4MgCO3·Mg(OH)2·4H2O was constructed on the oxide film. Besides, compared with the oxide film, the mineralized film increased the corrosion potential (Ecorr) of the alloy from -1.41 VSCE to -1.33 VSCE, and reduced the corrosion current density (icorr) of the alloy from 1.62×10-4 A/cm2 to 2.47×10-5 A/cm2. In addition, the mineralized film can also transform the local corrosion of the alloy into uniform corrosion, showing excellent corrosion protection performance.
Key words:  magnesium alloy    high temperature oxidation    carbon dioxide mineralization    corrosion protection
出版日期:  2024-08-25      发布日期:  2024-09-10
ZTFLH:  TG178  
基金资助: 中央高校基本科研业务费专项资金(2023QN1033);中国矿业大学材料科学与工程学科引导基金(CUMTMS202210)
通讯作者:  *乐启炽,东北大学材料电磁过程研究教育部重点实验室教授、博士研究生导师。1990年本科毕业于东北大学有色金属冶金专业,并于2001年获得材料加工专业博士学位。目前主要从事镁合金凝固与外场调控、镁合金成形理论与工艺、高性能镁合金与镁基复合材料以及镁合金电化学与表面工程的研究工作。在Journal of Power Sources、Ultrasonics Sonochemistry、Corrosion Science、《金属学报》等国内外重要学术期刊和国际会议上发表学术论文300余篇,其中SCI收录180余篇;主编教材1部,合作撰写专著4部;已授权专利50余项。qichil@mail.neu.cn   
作者简介:  程春龙,2016年6月、2022年6月分别于青海大学和东北大学获得工学学士学位和博士学位,现为中国矿业大学材料与物理学院师资博士后。目前主要从事阻燃、抗高温氧化与耐蚀镁合金的开发与研究。在Corrosion Science、Applied Surface Science、Journal of Magnesium and Alloys、Materials Chemistry and Physics等期刊已发表论文10余篇。
引用本文:    
程春龙, 陈正, 陈长玖, 柳力晨, 乐启炽. 镁合金表面高温氧化膜CO2矿化处理研究[J]. 材料导报, 2024, 38(16): 23040159-6.
CHENG Chunlong, CHEN Zheng, CHEN Changjiu, LIU Lichen, LE Qichi. Research on CO2 Mineralization of High Temperature Oxide Film on Magnesium Alloy Surface. Materials Reports, 2024, 38(16): 23040159-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23040159  或          http://www.mater-rep.com/CN/Y2024/V38/I16/23040159
1 Jiang B, Liu W, Dong H, et al. Journal of Aeronautical Materials, 2018, 38(4), 14 (in Chinese).
蒋斌, 刘文君, 董含武, 等. 航空材料学报, 2018, 38(4), 14.
2 Bao J, Li Q, Chen X, et al. Materials Reports, 2022, 36(10), 1 (in Chinese).
鲍键, 李全安, 陈晓亚, 等. 材料导报, 2022, 36(10), 1.
3 Song Y, Fu H, Wang Z, et al. Materials Reports, 2019, 33(3), 834 (in Chinese).
宋雨来, 付洪德, 王震, 等. 材料导报, 2019, 33(3), 834.
4 Liu Z, Huang H, Li L, et al. MW Metal Cutting, DOI:10.3969/j.issn.1674-1641.2022.01.014 (in Chinese).
刘志峰, 黄海鸿, 李磊, 等. 金属加工(冷加工), DOI:10. 3969/j. issn. 1674-1641. 2022. 01. 014.
5 Joun M S, Ji S M, Yoo J D, et al. Journal of Manufacturing Processes, 2022, 84, 764.
6 Xu W Q, Birbilis N, Sha G, et al. Nature Materials, 2015, 14, 1229.
7 Jin Y, Wang K, Wang W, et al. Materials Characterization, 2019, 150, 52.
8 Lotfpour M, Emamy M, Dehghanian C, et al. Journal of Materials Engineering & Performance, 2017, 26(5), 1.
9 Atrens A, Song G L, Liu M, et al. Advanced Engineering Materials, 2015, 17, 400.
10 Molaei M, Babaei K, Fattah-alhosseini A. Journal of Magnesium and Alloys, 2021, 9, 1164.
11 Maurya R, Siddiqui A R, Balani K. Applied Surface Science, 2018, 443, 429.
12 Wu Y, Wang Y, Tian S, et al. Applied Surface Science, 2019, 470, 430.
13 Wu Y, Wang Y, Tian S, et al. Colloids and Surfaces B: Biointerfaces, 2020, 190, 110901.
14 Wei D, Wang J, Liu Y, et al. Chemical Engineering Journal, 2021, 404, 126444.
15 Chu J H, Tong L B, Zhang J B, et al. Carbon, 2019, 141, 154.
16 Chen Y, Wu L, Yao W, et al. Journal of Industrial and Engineering Chemistry, 2023, 117, 319.
17 Chen Y, Wu L, Yao W, et al. Surface & Coatings Technology, 2022, 451, 129032.
18 Wang Y, Liu B, Zhao X, et al. Nature Communications, 2018, 9, 1.
19 Luo X T, Wei Y K, Shen J H, et al. Journal of Magnesium and Alloys, 2023, https://doi. org/10. 1016/j. jma. 2022. 12. 011.
20 Cheng C, Le Q, Hu C, et al. Applied Surface Science, 2022, 600, 153970.
21 Liu Y J. Study on mineralization mechanism and gelling property of CO2 from waste containing calcium and magnesium. Ph. D. Thesis, China General Research Institute of Building Materials Science, China, 2022 (in Chinese).
刘姚君. 含钙镁废弃物CO2矿化机制及其产物胶凝性能研究. 博士学位论文, 中国建筑材料科学研究总院, 2022.
22 Cheng C, Chen Z, Fan Y, et al. Materials Letters, 2023, 347, 134660.
23 Heyns A M, Prinsloo L C, Range K J, et al. Journal of Solid State Chemistry 1998, 137, 33.
24 Hopkinson L, Kristova P, Rutt K, et al. Geochimica Et Cosmochimica Acta, 2012, 76, 1.
25 Varadharajan R, Baskaran D. Journal of Nanostructures, 2017, 7, 189.
26 Saddeek Y B. Physica B Condensed Matter, 2011, 406(3), 562.
27 Cheng W, Fang L, Cheng H, et al. Journal of Industrial and Engineering Chemistry, 2019, 76, 215.
28 Zhang C Y. Controlled growth of MgCO3·3H2O during CO2 mineralization. Ph. D. Thesis, Shanxi University, China, 2018 (in Chinese).
张翠钰. MgCO3·3H2O在CO2矿化过程中的可控生长. 博士学位论文, 山西大学, 2018.
29 Yan Pingke, Zhang Xu, Gao Yujuan, et al. Bulletin of the Chinese Ceramic Society, 2016, 35(3), 700 (in Chinese).
闫平科, 张旭, 高玉娟, 等. 硅酸盐通报, 2016, 35(3), 700.
[1] 孙华键, 郭德林, 李如庆, 侯良朋, 杨明辉, 孙金钊, 殷凤仕. 改性MCrAlY涂层的研究进展[J]. 材料导报, 2024, 38(7): 22120155-10.
[2] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[3] 张娜娜, 李全安, 陈晓亚, 陈培军, 谭劲峰. 高性能镁合金轧制成形研究进展[J]. 材料导报, 2024, 38(2): 22080125-9.
[4] 任东亭, 王文权, 张新戈, 杜文博, 朱胜. 镁合金基体超音速等离子喷涂Al-Al2O3复合涂层组织与耐腐蚀性能研究[J]. 材料导报, 2024, 38(16): 22120140-7.
[5] 计鸿鑫, 任伟杰, 蒋先贤, 杜文宇, 孙静娜, 黄华贵. 镁合金板材弯曲回弹预测与控制研究进展[J]. 材料导报, 2024, 38(15): 23080183-7.
[6] 肖雯心, 王叶, 马凯, 代朝能, 裴三略, 王丹芊, 王敬丰. 镁合金表面化学转化涂层研究进展[J]. 材料导报, 2024, 38(12): 23010121-12.
[7] 龙飞, 刘瞿, 朱艺星, 周梦然, 陈高强, 史清宇. 搅拌摩擦加工调控Mg-5Zn-0.6Zr合金耐蚀性的研究[J]. 材料导报, 2024, 38(10): 23020077-6.
[8] 陈飞寰, 蔡召兵, 董颖辉, 林广沛, 张坡, 卢冰文, 古乐. 激光熔覆NbMoTaWV难熔高熵合金涂层的高温氧化行为[J]. 材料导报, 2024, 38(10): 22110117-8.
[9] 卫元坤, 张优, 张政, 王菊萍, 陈飞. 基于缓蚀剂微/纳米容器的智能自修复涂层研究进展[J]. 材料导报, 2023, 37(8): 21050145-10.
[10] 安凌云, 常成功, 康迪菘, 王钊, 孟雷超, 彭建洪. 镁合金微弧氧化膜在三种饱和盐溶液中的耐蚀性研究[J]. 材料导报, 2023, 37(7): 21070250-10.
[11] 谭钦文, 邓黎鹏, 易润华, 程东海, 李东阳. Ni中间层镁/钛异种材料电阻点焊接头组织与性能[J]. 材料导报, 2023, 37(7): 21090077-4.
[12] 蔡达, 王立世, 胡心彬. AA5052铝合金/AZ31B镁合金搅拌摩擦焊接头的腐蚀行为研究[J]. 材料导报, 2023, 37(4): 21040318-7.
[13] 高圣伦, 孙彬, 程磊, 刘振宇. 排气系统用不锈钢在汽车尾气环境下的高温氧化行为[J]. 材料导报, 2023, 37(24): 22080197-7.
[14] 郑洋, 张璇, 卢佳, 何东磊, 宿振宇, 牛伟, 于镇洋, 孙荣禄, 李岩. 医用镁合金体内降解行为与表面改性研究进展[J]. 材料导报, 2023, 37(19): 22020134-16.
[15] 李少鹏, 王德芳, 谢文玲, 李秀兰, 李轩. 一步法反应时间对AZ91镁合金表面超疏水涂层耐腐蚀性的影响[J]. 材料导报, 2023, 37(18): 22010063-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed