Please wait a minute...
材料导报  2023, Vol. 37 Issue (7): 21090077-4    https://doi.org/10.11896/cldb.21090077
  金属与金属基复合材料 |
Ni中间层镁/钛异种材料电阻点焊接头组织与性能
谭钦文1,2, 邓黎鹏1,2,*, 易润华1,2, 程东海2, 李东阳2
1 南昌航空大学轻合金加工科学与技术国防重点学科实验室,南昌 330063
2 南昌航空大学航空制造工程学院,南昌 330063
Microstructure and Properties of Resistance Spot Welded Joints of Ni Interlayer Magnesium/Titanium Dissimilar Materials
TAN Qinwen1,2, DENG Lipeng1,2,*, Yi Runhua1,2, CHENG Donghai2, LI Dongyang2
1 National Defense Key Discipline Laboratory of Light Alloy Processing Science and Technology, Nanchang Aviation University, Nanchang 330063, China
2 School of Aeronautical Manufacturing Engineering, Nanchang Hangkong University, Nanchang 330063, China
下载:  全 文 ( PDF ) ( 12922KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用三相次级整流电阻焊机进行镁/钛异种材料电阻点焊实验,添加20 μm纯Ni箔作为中间层,研究焊接工艺参数(焊接电流I、焊接时间t、焊接压力P)对点焊接头成形及力学性能的影响,及Ni对点焊接头界面组织的调控作用。结果表明:一定范围内,随着热输入量的增大,界面化合物层厚度及有效承载面积逐渐增大,接头承载能力提高,接头成形良好;当I=20.7 kA、t=20 cyc、P=7.63 kN时,获得接头最大拉剪载荷5.249 kN。镁/钛点焊接头界面组织成分由镁侧至钛侧依次为α-Mg、α-Mg+Mg2Ni共晶组织、Ti2Ni界面层、纯Ti,界面层组织呈中间厚两边薄的“山峰型”分布特点。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谭钦文
邓黎鹏
易润华
程东海
李东阳
关键词:  镁合金  钛合金  电阻点焊  Ni中间层  界面调控    
Abstract: A three-phase secondary rectifier resistance welding machine was used to conduct resistance spot welding of magnesium/titanium dissimilar materials, with 20 μm pure Ni foil added as the intermediate layer. The influence of welding process parameters, including welding current (I), welding time (t) and welding pressure (P) on the formation and mechanical properties of spot welded joints was studied, and the regulation and control effect of Ni on the interface structure of spot welded joints was investigated. The results show that within a certain range, the thickness of the interface compound layer, effective bearing area and bearing capacity of the joint increased, as the heat input increased, and the welded joints with good appearance were formed. Under the condition of I=20.7 kA, t=20 cyc, and P=7.63 kN, the maximum tensile-shear load of the joint reached 5.249 kN. The interface composition of magnesium/titanium spot welded joints from the magnesium side to the titanium side were α-Mg, (α-Mg+Mg2Ni) eutectic structure, Ti2Ni interface layer, and pure Ti. The interface layer structure presented a mountain-shaped distribution characteristic with a thick center and thin sides.
Key words:  magnesium alloy    titanium alloy    resistance spot welding    Ni interlayer    interface regulation
出版日期:  2023-04-10      发布日期:  2023-04-07
ZTFLH:  TG453.9  
基金资助: 国家自然科学基金(51965045);南昌航空大学轻合金加工科学与技术国防重点学科实验室开放基金(EG201903453)
通讯作者:  * 邓黎鹏,南昌航空大学航空制造工程学院副教授、硕士研究生导师。2002毕业于南昌航空大学,获学士学位;2005毕业于南昌航空大学焊接技术与工程专业,获硕士学位。目前主持航空企业横向课题等10余项。在国内外核心刊物上发表论文20余篇,其中SCI、EI收录近10篇。主要从事钛合金、高温合金、铝合金等有色金属的电阻焊、搅拌摩擦焊等方面的技术与装备研究。denglipeng@nchu.edu.cn   
作者简介:  谭钦文,南昌航空大学航空制造工程学院在读硕士研究生,主要研究方向为异种材料连接技术。2019年获安徽工程大学学士学位。
引用本文:    
谭钦文, 邓黎鹏, 易润华, 程东海, 李东阳. Ni中间层镁/钛异种材料电阻点焊接头组织与性能[J]. 材料导报, 2023, 37(7): 21090077-4.
TAN Qinwen, DENG Lipeng, Yi Runhua, CHENG Donghai, LI Dongyang. Microstructure and Properties of Resistance Spot Welded Joints of Ni Interlayer Magnesium/Titanium Dissimilar Materials. Materials Reports, 2023, 37(7): 21090077-4.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21090077  或          http://www.mater-rep.com/CN/Y2023/V37/I7/21090077
1 Wu G H, Cheng Y S, Ding W J. Manned Spaceflight, 2016, 22(3), 281 (in Chinese).
吴国华, 陈玉狮, 丁文江. 载人航天, 2016, 22(3), 281.
2 Kurzynowski T, Pawlak A, Smolina I. Archives of Civil and Mechanical Engineering, 2020, 20(1), 1.
3 Williams J C, Boyer R R. Metals, 2020, 10(6), 705.
4 Liu S F, Song X, Xue T, et al. Journal of Aeronautical Materials, 2020, 40(3), 83 (in Chinese).
刘世锋, 宋玺, 薛彤, 等. 航空材料学报, 2020, 40(3), 83.
5 Choi J W, Liu H, Ushioda K, et al. Materialia, 2019, 7(12), 67.
6 Atieh A M, Khan T I. Journal of Materials Processing Tech, 2014, 214(12), 3158.
7 Tan C W, Zhang K P, Cheng B, et al. Transactions of the China Wel-ding Institution, 2016(5), 57 (in Chinese).
檀财旺, 张凯平, 陈波, 等. 焊接学报, 2016(5), 57.
8 Auwal S T, Ramesh S, Zhang Z, et al. Journal of Manufacturing Processes, 2019, 37, 251.
9 Liu F, Hou Q, Hu H, et al. Science and Technology of Welding and Joining, 2020, 25(7), 581.
10 Tan F F, Xie Z X, Du K, et al. Hot Working Technology, 2013, 42(1), 198 (in Chinese).
谈芬芳, 谢志雄, 杜康, 等. 热加工工艺, 2013, 42(1), 198.
11 Das T, Das R, J Paul. Journal of Manufacturing Processes, 2020, 53, 260.
12 Cheng Y P, Fang D C, Hu D E. Transactions of the China Welding Institution, 2018, 39(4), 58 (in Chinese).
陈益平, 范东辰, 胡德安. 焊接学报, 2018, 39(4), 58.
13 Zhen S, Cheng D H, Cheng Y P, et al. Transactions of the China Wel-ding Institution, 2017(2), 54 (in Chinese).
郑森, 程东海, 陈益平, 等. 焊接学报, 2017(2), 54.
14 Xu C, Peng C. Materials Research Express, 2019, 6(11), 116.
15 Tan C, Xiao L, Liu F, et al. Journal of Materials Engineering & Performance, 2017, 26(6), 1.
16 Tan C, Yang J, Zhao X, et al. Journal of Alloys and Compounds, 2018, 764, 186.
17 Atieh A M, Khan T I. Journal of Materials Science, 2014, 49, 7648.
18 Tan C, Zang C, Zhao X, et al. Optics & Laser Technology, 2018, 108, 378.
[1] 安凌云, 常成功, 康迪菘, 王钊, 孟雷超, 彭建洪. 镁合金微弧氧化膜在三种饱和盐溶液中的耐蚀性研究[J]. 材料导报, 2023, 37(7): 21070250-10.
[2] 蔡达, 王立世, 胡心彬. AA5052铝合金/AZ31B镁合金搅拌摩擦焊接头的腐蚀行为研究[J]. 材料导报, 2023, 37(4): 21040318-7.
[3] 李多娇, 程春龙, 乐启炽, 陈亮, 闫家仕. 镁合金氧化机理研究进展[J]. 材料导报, 2023, 37(1): 20120108-9.
[4] 王伟, 郭鸽鸽, 丁士杰, 程鹏, 高原, 王快社. 钛合金表面抗氧化玻璃涂层研究进展[J]. 材料导报, 2022, 36(Z1): 21110265-8.
[5] 张书弟, 何欢欢, 许宇恒, 徐阳. AZ91D镁合金锰系磷酸盐转化膜的研究:磷化液各组分及含量对耐蚀性能的影响[J]. 材料导报, 2022, 36(Z1): 22010229-6.
[6] 曹召勋, 王军, 刘辰, 韩俊刚, 王荫洋, 钟亮, 王荣, 徐永东, 朱秀荣. 铸态Mg-2Y-0.8Mn-0.6Ca-0.5Zn镁合金热变形行为研究[J]. 材料导报, 2022, 36(Z1): 21120147-5.
[7] 焦宇鸿, 朱建锋, 王芬. SiC/Al基复合材料界面调控[J]. 材料导报, 2022, 36(9): 20070174-13.
[8] 贾红敏, 常剑秀. 定向凝固镁合金的研究进展及应用前景[J]. 材料导报, 2022, 36(6): 20060149-7.
[9] 徐英卓, 王秀凯, 常麟晖, 陈步明, 黄惠, 何亚鹏, 郭忠诚. 热处理对大变形量Zn-1.65Cu-0.15Ti合金的组织和性能的影响[J]. 材料导报, 2022, 36(23): 21030294-7.
[10] 徐志超, 吴涛, 郭学锋, 杨文朋, 樊建峰, 肖思宇. 脉冲电流在镁合金加工中的应用进展[J]. 材料导报, 2022, 36(21): 20100018-10.
[11] 刘珂, 张宝煊, 黄光胜, 蒋斌, 汤爱涛, 潘复生. 控制挤压比制备的AZ91异构镁合金的组织与力学性能[J]. 材料导报, 2022, 36(20): 21050132-7.
[12] 徐楷昕, 雷振, 黄瑞生, 尹立孟, 方乃文, 邹吉鹏, 曹浩. 40 mm厚TC4钛合金窄间隙激光填丝焊接头组织及性能[J]. 材料导报, 2022, 36(2): 20120180-6.
[13] 刘艳辉, 马鸣龙, 张奎, 李兴刚, 李永军, 石国梁, 袁家伟. 镁合金电磁屏蔽性能的研究进展[J]. 材料导报, 2022, 36(18): 20070297-6.
[14] 黄晓锋, 张展裕, 尚文涛, 杨凡, 张胜. Mg-7Zn-0.2Ti-xCu镁合金非枝晶组织的演变过程及机理[J]. 材料导报, 2022, 36(18): 21050203-7.
[15] 赵鸿飞, 郭丽丽, 赵颖, 苑菁茹, 运新兵. AZ31镁合金板材单双杆连续挤压变形过程及组织性能的对比[J]. 材料导报, 2022, 36(18): 21040305-7.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed