Non-dendritic Microstructure Evolution Process and Mechanism of Mg-7Zn-0.2Ti-xCu Magnesium Alloys
HUANG Xiaofeng1,2,*, ZHANG Zhanyu1, SHANG Wentao1, YANG Fan1, ZHANG Sheng1
1 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China 2 Key Laboratory of Nonferrous Metal Alloys and Processing, Ministry of Education, Lanzhou University of Technology, Lanzhou 730050, China
Abstract: Semi-solid billets of Mg-7Zn-0.2Ti-xCu (x=0, 0.5, 1.0, 1.5, mass fraction/%) alloys were prepared by isothermal heat treatment. The effects of Cu content on the as-cast and semi-solid microstructure of Mg-7Zn-0.2Ti-xCu alloy were investigated. Meanwhile, the effects of isothermal temperature and holding time on the evolution of the semi-solid microstructure of Mg-7Zn-0.2Ti-1Cu alloy were also studied, and the evolution mechanism of non-dendritic microstructure during isothermal heat treatment was analyzed. The results show that during the semi-solid thermal transformation, the size and shape factor of solid particles decrease first and then increase with the increase of isothermal temperature and holding time. Meanwhile, the as-cast microstructure and the diffusion behavior of solute atoms are the main factors affecting the non-dendritic microstructure and evolution of the non-dendritic microstructure during isothermal heat treatment. When Cu content reaches 1.0% (mass fraction), the as-cast microstructure of the alloy is fine, and the optimization effect of Cu on the non-dendritic microstructure is the best. The non-dendritic microstructure of Mg-7Zn-0.2Ti-1Cu alloy obtained by holding at 600 ℃ for 30 min is relatively ideal, and the average solid particles size, shape factor, and solid fraction are 43.12 μm, 1.46 and 59.77%, respectively, which meet the requirements of semi-solid metal forming.
1 Liu W, Yang D D, Quan G F, et al. Rare Metal Materials and Enginee-ring, 2016, 45(8), 1967. 2 Meng Y.Journal of Netshape Forming Engineering, 2016, 8(4), 21(in Chinese). 孟毅. 精密成形工程, 2016, 8(4), 21. 3 Yang M B, Pan F S, Chen R J, et al. Transactions of Nonferrous Metals Society of China, 2008, 18(3), 566. 4 Qin M L. The influence thermal treatment on Mg-xZn alloy and semi-solid water quenching microstructure. Master's Thesis, Lanzhou University of Technology, China, 2016(in Chinese). 秦牧岚. 热处理对Mg-xZn合金及其半固态水淬组织的影响. 硕士学位论文, 兰州理工大学, 2016. 5 Ren Y P, Liu B S, Xie H B, et al. Materials Today Communications, 2021, 26, 102017. 6 Chen X Q, Liu J W, Luo C P.Materials Reports, 2008, 22(5), 58(in Chinese). 陈晓强, 刘江文, 罗承萍. 材料导报, 2008, 22(5), 58. 7 Yan Z N, Wang L P, Feng Y C, et al. Heat Treatment of Metals, 2020, 45(1), 143(in Chinese). 阎泽南, 王丽萍, 冯义成, 等. 金属热处理, 2020, 45(1), 143. 8 Yuan G Y, You G Q, Guo W.Hot Working Technology, 2018, 47(11), 11(in Chinese). 袁光宇, 游国强, 郭伟. 热加工工艺, 2018, 47(11), 11. 9 Candana S, Unal M, Koc E, et al. Journal of Alloys and Compounds, 2010, 509, 1958. 10 Yang J C. The research on semi-solid microstructure and properties of Mg-6Zn-xTi alloy. Master's Thesis, Lanzhou University of Technology, China, 2018(in Chinese). 杨健长. Mg-6Zn-xTi合金及其半固态组织与性能的研究. 硕士学位论文, 兰州理工大学, 2018. 11 Buha J.Journal of Material Science, 2008, 43, 1220. 12 Buha J. Journal of Alloys and Compounds, 2009, 472, 171. 13 Li X, Liu J W, Luo C P.Acta Metallurgica Sinica, 2006, 42(7), 733(in Chinese). 李萧, 刘江文, 罗承萍. 金属学报, 2006, 42(7), 733. 14 Li A W, Zhu H M, Jiao D L, et al. Materials Reports, 2008, 22(11), 74(in Chinese). 李爱文, 朱红梅, 焦东玲, 等. 材料导报, 2008, 22(11), 74. 15 Wang P F, Huang X F, Feng K, et al. China Foundry Machinery & Technology, 2012(1), 10(in Chinese). 王鹏飞, 黄晓锋, 冯凯, 等. 中国铸造装备与技术, 2012(1), 10. 16 Fan Z. International Materials Reviews, 2002, 47(2), 49. 17 Zhang W P, Ma M L, Yuan J W, et al. Transactions of Nonferrous Metals Society of China, 2020, 30(7), 1803. 18 Jin Z G, Liu X Z, Zhang W W, et al. China Foundry Machinery & Technology, 2016(3), 16(in Chinese). 金振国, 刘小战, 张文文, 等. 中国铸造装备与技术, 2016(3), 16. 19 Feng K, Huang X F, Ma Y, et al. The Chinese Journal of Nonferrous Metals, 2013, 23(3), 635(in Chinese). 冯凯, 黄晓锋, 马颖, 等. 中国有色金属学报, 2013, 23(3), 635. 20 Zhu C L, Wu X Q, Qiu S C, et al. Journal of Central South University, 2021, 28(1), 1. 21 Li Y D, Hao Y, Chen T J, et al. The Chinese Journal of Nonferrous Metals, 2004(3), 366(in Chinese). 李元东, 郝远, 陈体军, 等. 中国有色金属学报, 2004(3), 366. 22 Li Y D, Chen T J, Ma Y, et al. The Chinese Journal of Nonferrous Metals, 2008(1), 18(in Chinese). 李元东, 陈体军, 马颖, 等. 中国有色金属学报, 2008(1), 18. 23 Zhu M F, Xing L K, Fang H, et al. Acta Metallurgica Sinica, 2018, 54(5), 789(in Chinese). 朱鸣芳, 邢丽科, 方辉, 等. 金属学报, 2018, 54(5), 789. 24 Zhang Y, Li M, Yang W L, et al. Transactions of Materials and Heat Treatment, 2020, 41(6), 7(in Chinese). 张玉, 李明, 杨文龙, 等. 材料热处理学报, 2020, 41(6), 7. 25 Du X H, Zhang E L.Materials Letters, 2006, 61(11), 2333. 26 Loué W R, Suéry M. Materials Science and Engineering A, 1995, 203(1), 1.