Please wait a minute...
材料导报  2022, Vol. 36 Issue (18): 21050203-7    https://doi.org/10.11896/cldb.21050203
  金属与金属基复合材料 |
Mg-7Zn-0.2Ti-xCu镁合金非枝晶组织的演变过程及机理
黄晓锋1,2,*, 张展裕1, 尚文涛1, 杨凡1, 张胜1
1 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
2 兰州理工大学有色金属合金及加工教育部重点实验室,兰州 730050
Non-dendritic Microstructure Evolution Process and Mechanism of Mg-7Zn-0.2Ti-xCu Magnesium Alloys
HUANG Xiaofeng1,2,*, ZHANG Zhanyu1, SHANG Wentao1, YANG Fan1, ZHANG Sheng1
1 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
2 Key Laboratory of Nonferrous Metal Alloys and Processing, Ministry of Education, Lanzhou University of Technology, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 7860KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用等温热处理法制备了Mg-7Zn-0.2Ti-xCu(x=0、0.5、1.0、1.5, 质量分数/%)合金的半固态坯料,探讨了Cu元素及其含量对Mg-7Zn-0.2Ti-xCu合金铸态和半固态组织的影响,同时,研究了等温温度和保温时间对Mg-7Zn-0.2Ti-1Cu合金半固态组织演变的影响并分析了非枝晶组织的形成机理。结果表明:在半固态组织演变过程中,随着等温温度的升高和保温时间的延长,固相颗粒的尺寸和形状因子先减小后增大。铸态组织和溶质原子的扩散行为是影响等温热处理过程中非枝晶组织形貌及其演变的主要因素。当Cu含量为1.0%(质量分数)时,合金铸态组织细小,Cu对非枝晶组织的优化效果最佳。Mg-7Zn-0.2Ti-1Cu合金在600 ℃下保温30 min时获得的非枝晶组织较为理想,其固相颗粒的平均尺寸、形状因子和固相率分别为43.12 μm、1.46和59.77%,满足半固态成形的要求。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄晓锋
张展裕
尚文涛
杨凡
张胜
关键词:  镁合金  Cu含量  非枝晶组织  演变机理    
Abstract: Semi-solid billets of Mg-7Zn-0.2Ti-xCu (x=0, 0.5, 1.0, 1.5, mass fraction/%) alloys were prepared by isothermal heat treatment. The effects of Cu content on the as-cast and semi-solid microstructure of Mg-7Zn-0.2Ti-xCu alloy were investigated. Meanwhile, the effects of isothermal temperature and holding time on the evolution of the semi-solid microstructure of Mg-7Zn-0.2Ti-1Cu alloy were also studied, and the evolution mechanism of non-dendritic microstructure during isothermal heat treatment was analyzed. The results show that during the semi-solid thermal transformation, the size and shape factor of solid particles decrease first and then increase with the increase of isothermal temperature and holding time. Meanwhile, the as-cast microstructure and the diffusion behavior of solute atoms are the main factors affecting the non-dendritic microstructure and evolution of the non-dendritic microstructure during isothermal heat treatment. When Cu content reaches 1.0% (mass fraction), the as-cast microstructure of the alloy is fine, and the optimization effect of Cu on the non-dendritic microstructure is the best. The non-dendritic microstructure of Mg-7Zn-0.2Ti-1Cu alloy obtained by holding at 600 ℃ for 30 min is relatively ideal, and the average solid particles size, shape factor, and solid fraction are 43.12 μm, 1.46 and 59.77%, respectively, which meet the requirements of semi-solid metal forming.
Key words:  magnesium alloy    Cu content    non-dendritic microstructure    evolution mechanism
收稿日期:  2202-09-25      出版日期:  2022-09-25      发布日期:  2022-09-26
ZTFLH:  TG146.2  
基金资助: 国家自然科学基金(51464032)
通讯作者:  *huangxf_lut@163.com   
作者简介:  黄晓锋,博士,副教授,硕士研究生导师。1995年7月于南昌航空工业学院获得学士学位,1998年5月于吉林工业大学获得硕士学位,2002年3月于哈尔滨工业大学获得博士学位,2004年5月于上海交通大学博士后出站,2004年6月进入兰州理工大学工作。主要从事高性能轻合金材料、轻合金半固态成形和精密塑性加工的研究工作。主持和参加省部级项目三项、863计划两项,发表文章80余篇,申请专利四项。
引用本文:    
黄晓锋, 张展裕, 尚文涛, 杨凡, 张胜. Mg-7Zn-0.2Ti-xCu镁合金非枝晶组织的演变过程及机理[J]. 材料导报, 2022, 36(18): 21050203-7.
HUANG Xiaofeng, ZHANG Zhanyu, SHANG Wentao, YANG Fan, ZHANG Sheng. Non-dendritic Microstructure Evolution Process and Mechanism of Mg-7Zn-0.2Ti-xCu Magnesium Alloys. Materials Reports, 2022, 36(18): 21050203-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050203  或          http://www.mater-rep.com/CN/Y2022/V36/I18/21050203
1 Liu W, Yang D D, Quan G F, et al. Rare Metal Materials and Enginee-ring, 2016, 45(8), 1967.
2 Meng Y.Journal of Netshape Forming Engineering, 2016, 8(4), 21(in Chinese).
孟毅. 精密成形工程, 2016, 8(4), 21.
3 Yang M B, Pan F S, Chen R J, et al. Transactions of Nonferrous Metals Society of China, 2008, 18(3), 566.
4 Qin M L. The influence thermal treatment on Mg-xZn alloy and semi-solid water quenching microstructure. Master's Thesis, Lanzhou University of Technology, China, 2016(in Chinese).
秦牧岚. 热处理对Mg-xZn合金及其半固态水淬组织的影响. 硕士学位论文, 兰州理工大学, 2016.
5 Ren Y P, Liu B S, Xie H B, et al. Materials Today Communications, 2021, 26, 102017.
6 Chen X Q, Liu J W, Luo C P.Materials Reports, 2008, 22(5), 58(in Chinese).
陈晓强, 刘江文, 罗承萍. 材料导报, 2008, 22(5), 58.
7 Yan Z N, Wang L P, Feng Y C, et al. Heat Treatment of Metals, 2020, 45(1), 143(in Chinese).
阎泽南, 王丽萍, 冯义成, 等. 金属热处理, 2020, 45(1), 143.
8 Yuan G Y, You G Q, Guo W.Hot Working Technology, 2018, 47(11), 11(in Chinese).
袁光宇, 游国强, 郭伟. 热加工工艺, 2018, 47(11), 11.
9 Candana S, Unal M, Koc E, et al. Journal of Alloys and Compounds, 2010, 509, 1958.
10 Yang J C. The research on semi-solid microstructure and properties of Mg-6Zn-xTi alloy. Master's Thesis, Lanzhou University of Technology, China, 2018(in Chinese).
杨健长. Mg-6Zn-xTi合金及其半固态组织与性能的研究. 硕士学位论文, 兰州理工大学, 2018.
11 Buha J.Journal of Material Science, 2008, 43, 1220.
12 Buha J. Journal of Alloys and Compounds, 2009, 472, 171.
13 Li X, Liu J W, Luo C P.Acta Metallurgica Sinica, 2006, 42(7), 733(in Chinese).
李萧, 刘江文, 罗承萍. 金属学报, 2006, 42(7), 733.
14 Li A W, Zhu H M, Jiao D L, et al. Materials Reports, 2008, 22(11), 74(in Chinese).
李爱文, 朱红梅, 焦东玲, 等. 材料导报, 2008, 22(11), 74.
15 Wang P F, Huang X F, Feng K, et al. China Foundry Machinery & Technology, 2012(1), 10(in Chinese).
王鹏飞, 黄晓锋, 冯凯, 等. 中国铸造装备与技术, 2012(1), 10.
16 Fan Z. International Materials Reviews, 2002, 47(2), 49.
17 Zhang W P, Ma M L, Yuan J W, et al. Transactions of Nonferrous Metals Society of China, 2020, 30(7), 1803.
18 Jin Z G, Liu X Z, Zhang W W, et al. China Foundry Machinery & Technology, 2016(3), 16(in Chinese).
金振国, 刘小战, 张文文, 等. 中国铸造装备与技术, 2016(3), 16.
19 Feng K, Huang X F, Ma Y, et al. The Chinese Journal of Nonferrous Metals, 2013, 23(3), 635(in Chinese).
冯凯, 黄晓锋, 马颖, 等. 中国有色金属学报, 2013, 23(3), 635.
20 Zhu C L, Wu X Q, Qiu S C, et al. Journal of Central South University, 2021, 28(1), 1.
21 Li Y D, Hao Y, Chen T J, et al. The Chinese Journal of Nonferrous Metals, 2004(3), 366(in Chinese).
李元东, 郝远, 陈体军, 等. 中国有色金属学报, 2004(3), 366.
22 Li Y D, Chen T J, Ma Y, et al. The Chinese Journal of Nonferrous Metals, 2008(1), 18(in Chinese).
李元东, 陈体军, 马颖, 等. 中国有色金属学报, 2008(1), 18.
23 Zhu M F, Xing L K, Fang H, et al. Acta Metallurgica Sinica, 2018, 54(5), 789(in Chinese).
朱鸣芳, 邢丽科, 方辉, 等. 金属学报, 2018, 54(5), 789.
24 Zhang Y, Li M, Yang W L, et al. Transactions of Materials and Heat Treatment, 2020, 41(6), 7(in Chinese).
张玉, 李明, 杨文龙, 等. 材料热处理学报, 2020, 41(6), 7.
25 Du X H, Zhang E L.Materials Letters, 2006, 61(11), 2333.
26 Loué W R, Suéry M. Materials Science and Engineering A, 1995, 203(1), 1.
[1] 张书弟, 何欢欢, 许宇恒, 徐阳. AZ91D镁合金锰系磷酸盐转化膜的研究:磷化液各组分及含量对耐蚀性能的影响[J]. 材料导报, 2022, 36(Z1): 22010229-6.
[2] 曹召勋, 王军, 刘辰, 韩俊刚, 王荫洋, 钟亮, 王荣, 徐永东, 朱秀荣. 铸态Mg-2Y-0.8Mn-0.6Ca-0.5Zn镁合金热变形行为研究[J]. 材料导报, 2022, 36(Z1): 21120147-5.
[3] 贾红敏, 常剑秀. 定向凝固镁合金的研究进展及应用前景[J]. 材料导报, 2022, 36(6): 20060149-7.
[4] 刘艳辉, 马鸣龙, 张奎, 李兴刚, 李永军, 石国梁, 袁家伟. 镁合金电磁屏蔽性能的研究进展[J]. 材料导报, 2022, 36(18): 20070297-6.
[5] 赵鸿飞, 郭丽丽, 赵颖, 苑菁茹, 运新兵. AZ31镁合金板材单双杆连续挤压变形过程及组织性能的对比[J]. 材料导报, 2022, 36(18): 21040305-7.
[6] 鲍键, 李全安, 陈晓亚, 张迁, 陈籽佚. 挤压镁合金的研究进展[J]. 材料导报, 2022, 36(10): 20090073-12.
[7] 胡捷, 程仁菊, 李上民, 谭磊, 李春雨, 刘运, 宋洁, 杨明波. Y对Mg-10Gd-xY-1Zn-0.5Zr(x=1,2)镁合金铸态显微组织和力学性能的影响[J]. 材料导报, 2021, 35(z2): 456-459.
[8] 王玉娇, 江海涛, 张韵, 王盼盼, 于博文, 徐哲. 镁合金海水电池阳极材料电化学性能研究进展[J]. 材料导报, 2021, 35(9): 9041-9048.
[9] 车波, 卢立伟, 吴木义, 康伟, 唐伦圆, 房大庆. 预时效对变形镁合金组织与力学性能的影响[J]. 材料导报, 2021, 35(21): 21249-21258.
[10] 明玥, 游国强, 姚繁锦, 曾升, 赵建华, 李卫荣. 金属镁的氧化及氧化机理研究进展[J]. 材料导报, 2021, 35(19): 19134-19141.
[11] 陈斐洋, 郭鹏程, 胡泽豪, 马洪浩, 张立强. 不同温度下AM80镁合金的动态力学响应及本构建模[J]. 材料导报, 2021, 35(16): 16093-16098.
[12] 刘筱, 王洋洋, 叶俊宏, 朱必武, 杨辉, 胡铭月, 唐昌平, 刘文辉. AZ31镁合金高应变速率轧制宏微观仿真[J]. 材料导报, 2021, 35(14): 14101-14106.
[13] 崔功军, 师睿博, 李赛, 刘慧强, 寇子明. AZ80A、ZK60A和ME20M镁合金干摩擦学性能研究[J]. 材料导报, 2021, 35(10): 10103-10108.
[14] 刘江林, 齐艳阳, 王涛, 王跃林, 任忠凯, 韩建超. 镁合金板材轧制成形边裂的研究进展[J]. 材料导报, 2020, 34(7): 7138-7145.
[15] 余东海, 熊开琴, 黄楠. 等离子体聚合聚环氧乙烷类涂层用于提高镁合金心血管支架抗腐蚀性能[J]. 材料导报, 2020, 34(6): 6166-6171.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed