Please wait a minute...
材料导报  2021, Vol. 35 Issue (16): 16093-16098    https://doi.org/10.11896/cldb.20060276
  金属与金属基复合材料 |
不同温度下AM80镁合金的动态力学响应及本构建模
陈斐洋1, 郭鹏程1,2, 胡泽豪1, 马洪浩1, 张立强1
1 中南林业科技大学机电工程学院,长沙 410004;
2 湖南大学汽车车身先进设计制造国家重点实验室,长沙 410082
Dynamic Mechanical Response and Constitutive Modeling of AM80 Magnesium Alloy at Various Temperatures
CHEN Feiyang1, GUO Pengcheng1,2, HU Zehao1, MA Honghao1, ZHANG Liqiang1
1 College of Mechanical and Electrical Engineering, Central South University of Forestry and Technology, Changsha 410004, China;
2 State Key Laboratory of Advanced Design and Manufacture for Vehicle Body, Hunan University, Changsha 410082, China
下载:  全 文 ( PDF ) ( 4874KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为构建可准确预测镁合金动态力学响应的统一本构模型,采用分离式霍普金森压杆装置对AM80镁合金进行高速冲击实验,变形温度为298 K、423 K和523 K,应变速率为1 100~5 000 s-1。结果表明:AM80镁合金具有明显的应变速率敏感性。变形温度为298 K时,镁合金的流变应力表现为正应变速率敏感性,当应变速率增至5 000 s-1的变形后期,镁合金的流变应力则表现为负应变速率敏感性;变形温度为423 K和523 K时,镁合金的流变应力表现为正应变速率敏感性,当应变速率高于临界值时,镁合金的流变应力则表现为负应变速率敏感性。将应变速率强化参数C和应变硬化参数n修正为变形温度T的函数,优化了Johnson-Cook本构模型,本构拟合结果与实验结果的误差在±10%范围内,其相关系数(R)和平均相对误差(AARE)分别为0.987、3.88%,说明所建本构模型能够准确预测AM80镁合金在不同变形条件下的流变应力行为。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈斐洋
郭鹏程
胡泽豪
马洪浩
张立强
关键词:  AM80镁合金  变形温度  动态力学响应  本构建模    
Abstract: In order to built a constitutive model which can accurately predict the dynamic mechanical response of magnesium alloys, high-speed impact tests were carried out with AM80 alloy using a separate Hopkinson pressure bar. The deformation temperatures were 298 K, 423 K and 523 K, and the applied strain rate ranges from 1 100 s-1 to 5 000 s-1. At 298 K, the flow stress of magnesium alloy exhibits a positive strain rate sensiti-vity (SRS), followed by a negative SRS as the strain rate increases to 5 000 s-1 in the later deformation stage. At 423 K and 523 K, the flow stress of magnesium alloy first shows a positive SRS, and then illustrates a negative SRS as the strain rate is higher than their critical values. An optimized Johnson-Cook constitutive model is built by modifying the strain rate strengthening parameter C and strain hardening parameter n to a function of deformation temperature T. The errors between the constitutive fitting and experiment results are within the range of -10%—10%, and the correlation coefficient R and average absolute relative error (AARE) are 0.987 and 3.88%, respectively. These shows that the optimized constitutive can accurately predict the high-speed impact flow stress behavior of AM80 alloy under various deformation temperatures.
Key words:  AM80 magnesium alloy    deformation temperature    dynamic mechanical response    constitutive modeling
                    发布日期:  2021-09-07
ZTFLH:  TP182  
基金资助: 国家自然科学基金(51905166);湖南省自然科学基金资助项目(2019JJ50586);湖南省教育厅科学研究项目(18B193)
通讯作者:  gpch860429@163.com   
作者简介:  陈斐洋,2021年6月毕业于中南林业科技大学,获得工程硕士学位。主要研究方向为镁合金动态冲击变形行为。
郭鹏程,中南林业科技大学讲师。2017年毕业于湖南大学,获得博士学位。主要研究方向为整车多学科多目标优化设计及车身用高强钢与铝镁合金成形技术。
引用本文:    
陈斐洋, 郭鹏程, 胡泽豪, 马洪浩, 张立强. 不同温度下AM80镁合金的动态力学响应及本构建模[J]. 材料导报, 2021, 35(16): 16093-16098.
CHEN Feiyang, GUO Pengcheng, HU Zehao, MA Honghao, ZHANG Liqiang. Dynamic Mechanical Response and Constitutive Modeling of AM80 Magnesium Alloy at Various Temperatures. Materials Reports, 2021, 35(16): 16093-16098.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20060276  或          http://www.mater-rep.com/CN/Y2021/V35/I16/16093
1 Liu Z.Theory and Application of Magnesium Based light Alloys, China Machine Press, China, 2002(in Chinese).
刘正. 镁基轻质合金理论基础及其应用, 机械工业出版社, 2002.
2 Suh J, Victoria-Hemandez J,Letzig D, et al.Journal of Materials Proces-sing Technology, 2015, 217, 286.
3 Huang X, Suzuki K, Chino Y, et al.Journal of Alloys and Compounds, 2015, 632, 94.
4 Ishikawa K, Watanabe H, Mukai T, et al.Materials Letters, 2005, 59(12), 1511.
5 Feather W G, Ghorbanpour S, Savage D J, et al.International Journal of Plasticity, 2019, 120, 180.
6 Wright T W.The Physics and Mathematics of Adiabatic Shear Bands, Cambridge University Press, 2002.
7 Duan Z Q, Shang Y.Microstructure evolution and adiabatic shear characteristics of materials under impact of projectiles, Publishing House of Electronics Industry, China, 2019(in Chinese).
段占强, 商艳. 弹丸冲击下材料微结构演化及绝热剪切特性,电子工业出版社,2019.
8 Mao P L, Xi T, Liu Z, et al.Journal of Shenyang University of Technology, 2013, 35(5), 515(in Chinese).
毛萍莉,席通,刘正,等. 沈阳工业大学学报,2013,35(5),515.
9 Li L, Muransky O, Flores-Johnson E A, et al.Materials Science & Engineering A, 2017, 684,37.
10 Mao P L, Liu Z, Wang C Y, et al.Materials Reports A: Review Papers, 2012, 26(4), 95(in Chinese).
毛萍莉, 刘正, 王长义,等. 材料导报:综述篇, 2012,26(4), 95.
11 Dudamell N V, Ulacia I, Galvez F, et al.Materials Science and Enginee-ring: A, 2012, 532(1), 528.
12 Li X D, Mao P L, Liu Y Y, et al.Acta Metallurgica Sinca, 2018, 54(4), 75(in Chinese).
李旭东,毛萍莉,刘晏宇,等.金属学报, 2018,54(4),75.
13 Yang Y, Wang Z, Jiang L.Journal of Alloys and Compounds, 2017, 705, 566.
14 Feng F, Huang S, Meng Z, et al.Materials and Design, 2014, 57(5), 10.
15 El-Magd E, Abouridouane M.Zeitschriftfur Metallkunde, 2001, 92(11),1231.
16 Chen X, Liao Q, Niu Y, et al.Journal of Materials Research and Technology, 2019,8(2),1859.
17 Jia W, Xu S, Le Q, et al.Materials & Design, 2016,106,120.
18 Liu X, Yi H X, Zhu B W, et al.Rare Metal Materials and Engineering, 2019, 48(7), 2171(in Chinese).
刘筱,易宏翔,朱必武, 等. 稀有金属材料与工程,2019,48(7),2171.
19 Guo P C, Ye T, Cao S F, et al.China Mechanical Engineering, 2017, 28(6), 739(in Chinese).
郭鹏程,叶拓,曹淑芬,等. 中国机械工程,2017,28(6),739.
20 Han G Q, Xie L S, Chen M H, et al.Rare Metal Materials and Enginee-ring, 2019(3), 847(in Chinese).
韩国强,谢兰生,陈明和,等. 稀有金属材料与工程, 2019(3),847.
21 Zhang C Q, Xie L S, Chen M H, et al.The Chinese Journal of Nonferrous Metals, 2015, 25(2), 323(in Chinese).
张长清,谢兰生,陈明和,等. 中国有色金属学报,2015,25(2),323.
22 Jiang D F, Lin G B, Shu D Y, et al.The Chinese Journal of Nonferrous Metals, 2016, 26(7), 1437(in Chinese).
江德斐,林国标,舒大禹,等. 中国有色金属学报,2016,26(7), 1437.
23 Ye J H, Chen M H, Wang N, et al.The Chinese Journal of Nonferrous Metals, 2019, 29(4), 733(in Chinese).
叶建华,陈明和,王宁,等. 中国有色金属学报,2019,29(4),733.
24 Chen Z H. Wrought magnesium alloys, Chemical Industry Press, China, 2005(in Chinese).
陈振华. 变形镁合金,化学工业出版社, 2005.
25 Shokry A.Journal of Materials Engineering and Performance, 2017, 26(12), 5723.
26 Khan A S, Huang S. Continuum theory of plasticity, John Wiley and Sons Inc, America, 1995.
[1] 童灯亮, 易幼平, 黄始全, 何海林, 郭万富, 王并乡. 变形温度对2A14铝合金组织与力学性能的影响[J]. 材料导报, 2020, 34(6): 6100-6104.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed