Please wait a minute...
材料导报  2021, Vol. 35 Issue (14): 14101-14106    https://doi.org/10.11896/cldb.20040038
  金属与金属基复合材料 |
AZ31镁合金高应变速率轧制宏微观仿真
刘筱1,*, 王洋洋1, 叶俊宏2, 朱必武1, 杨辉1, 胡铭月1, 唐昌平1, 刘文辉1
1 湖南科技大学,高温耐磨材料及制备技术湖南省国防科技重点实验室,湘潭 411201
2 湖南科技大学材料科学与工程学院,湘潭 411201
Macro-micro Simulation of AZ31 Magnesium Alloy Under High Strain Rate Rollin
LIU Xiao1,*, WANG Yangyang1, YE Junhong2, ZHU Biwu1, YANG Hui1, HU Mingyue1, TANG Changping1, LIU Wenhui1
1 Key Laboratory of High Temperature Wear Resistant Materials Preparation Technology of Hunan Province, Hunan University of Science and Technology, Xiangtan 411201, China
2 School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
下载:  全 文 ( PDF ) ( 6353KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作通过构建宏观有限元模型和微观动态再结晶模型,对AZ31镁合金在300~400 ℃、平均应变速率为10~29 s-1的条件下进行高应变速率轧制宏微观模拟。对比实验结果的结论如下:随着平均应变速率的增加,模拟的轧板宽度方向等效应力差值和宏观边裂长度都减小,等效应力差值越大,边裂长度越长,宏观模拟结果与实验一致;采用微观动态再结晶模型、宏观有限元历史加载耦合元胞自动机(CA),模拟AZ31镁合金高应变速率轧制中的动态再结晶过程,微观模拟结果与实验吻合;随着平均应变速率的增加,再结晶越完全,使得应力集中被释放,边裂长度减小。通过建立AZ31镁合金高应变速率轧制多尺度宏微观仿真模型,能够精确模拟仿真高应变速率轧制过程,对镁合金高应变速率轧制的精确控制提供了新的思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘筱
王洋洋
叶俊宏
朱必武
杨辉
胡铭月
唐昌平
刘文辉
关键词:  AZ31镁合金  高应变速率轧制  有限元  动态再结晶模型  宏微观模拟    
Abstract: Macroscopical finite element model and microcosmic dynamic recrystallization model were established to simulate high strain rate rolling of AZ31 magnesium alloy over the temperature ranges 300 ℃ to 400 ℃ with average strain rates of 10—29 s-1. The results according to the comparison between simulated results and experimental results show that with increasing the average strain rate, both the equivalent stress diffe-rence of the simulated rolled plate along the width direction and the macro crack length decrease. The greater the difference in the equivalent stress, the longer the crack length. The results of macro simulation agree well with the experimental results. Dynamic recrystallization of AZ31 magnesium alloy during high strain rate rolling was simulated using micro-dynamic recrystallization model and macro-finite element history loa-ding coupled cellular automata (CA). With strain rate increasing, recrystallization is gradually completely, followed by dissipation of stress concentration, finally causing the decrease of crack length. The high strain rate rolling process of AZ31 magnesium alloy can be accurately simulated by establishing a multi-scale macro and micro simulation model. This work provides a new idea for accurate control of high strain rate rolling of magnesium alloy.
Key words:  AZ31 magnesium alloy    high strain rate rolling    finite element    dynamic recrystallization model    macro-micro simulation
               出版日期:  2021-07-25      发布日期:  2021-08-03
ZTFLH:  TG146.2  
基金资助: 国家自然科学基金(52071139;51905166);湖南省自然科学基金(2018JJ3180;2020JJ5198);湖南省教育厅优秀青年项目(18B198)
通讯作者:  * liuxiao0105@163.com   
作者简介:  刘筱,湖南科技大学,副教授,湖南大学-McGill University联合培养博士。主要从事轻合金的塑性加工、组织演变和裂纹扩展机理等研究,主持项目6项,其中包含2项国家自然科学基金。
引用本文:    
刘筱, 王洋洋, 叶俊宏, 朱必武, 杨辉, 胡铭月, 唐昌平, 刘文辉. AZ31镁合金高应变速率轧制宏微观仿真[J]. 材料导报, 2021, 35(14): 14101-14106.
LIU Xiao, WANG Yangyang, YE Junhong, ZHU Biwu, YANG Hui, HU Mingyue, TANG Changping, LIU Wenhui. Macro-micro Simulation of AZ31 Magnesium Alloy Under High Strain Rate Rollin. Materials Reports, 2021, 35(14): 14101-14106.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20040038  或          http://www.mater-rep.com/CN/Y2021/V35/I14/14101
1 Wang E D. Journal of Netshape Forming Engineering, 2014, 6(6), 22(in Chinese).
王尔德. 精密成形工程,2014,6 (6),22.
2 Liu X, Zhu B W, Li L X, et al. The Chinese Journal of Nonferrous Me-tals, 2016, 26(2),288(in Chinese).
刘筱, 朱必武, 李落星, 等.中国有色金属学报, 2016, 26(2), 288.
3 Wang B J, Xu D K, Wang S D, et al. International Journal of Fatigue, 2019, 120, 46.
4 Zhu B W, Liu X, Xie C, et al. Journal of Materials Science & Technology, 2020, 50,59.
5 Zheng Y, Yan H G, Chen J H, et al. The Chinese Journal of Nonferrous Metals, 2014, 24(4), 839(in Chinese).
郑翊, 严红革, 陈吉华, 等. 中国有色金属学报, 2014, 24(4), 839.
6 Sanjari M, Farzadfar S A, Utsunomiya H, et al. Materials Science and Technology, 2012, 28(8), 928.
7 Zhu S Q, Yan H G, Chen J H, et al. Scripta Materialia, 2010, 63(10), 985.
8 Jiang J M, Wu J, Ni S, et al. Materials Science and Engineering: A, 2018, 712, 478.
9 Huang Z Q, Wei J C, Ma L F, et al. Rare Metal Materials and Enginee-ring, 2018, 47(6), 1926(in Chinese).
黄志权, 韦建春, 马立峰, 等. 稀有金属材料与工程, 2018, 47(6), 1926.
10 Liu J S, Zhu X H, Zheng L, et al. Light Alloy Fabrication Technology, 2009, 37(2), 18(in Chinese).
刘劲松, 竺晓华, 郑黎, 等. 轻合金加工技术, 2009, 37(2), 18.
11 Liu X, Zhu B W, Li L X. The Chinese Journal of Nonferrous Metals, 2013, 23(4), 898(in Chinese).
刘筱, 朱必武, 李落星.中国有色金属学报, 2013, 23(4), 898.
12 Liu L F, Ding H L, Kamado S, et al. The Chinese Journal of Nonferrous Metals, 2008,18(2), 250.
13 Xie C, He J M, Zhu B W, et al. International Journal of Plasticity, DOI:10.1016/j.ijplas.2018.07.017.
14 Wang S, Li H, Zhang H Q, et al. Journal of Netshape Forming Enginee-ring, 2017, 9(1), 53(in Chinese).
王森, 李恒, 张海芹, 等. 精密成形工程, 2017, 9(1), 53.
15 Xiao X P. Preparation of ultrafine grain magnesium alloy by accumulation roll bonding and microstructure refinement mechanism. Master's Thesis, Yanshan University, China, 2006 (in Chinese).
肖心萍. 累积叠轧焊法制备超细晶镁合金及组织细化机制研究. 硕士学位论文, 燕山大学, 2006.
16 Qi L H, Liu J, Guan J T, et al. Transactions of Nonferrous Metals Society of China, 2010, 20(9), 1737.
17 He Y, Zhang L W, Niu J, et al. Transactions of Materials and Heat Treatment, 2005, 26(4), 120.
18 Li X L, Li X L, Zhou H T, et al. Computational Materials Science, 2017, 140, 95.
19 Ding R, Guo Z X. Acta Materialia, 2001, 49(16),3163.
20 Roberts W, Ahlblom B. Acta Metall, 1978, 26(5), 801.
21 Chen F, Cui Z S, Liu J, et al. Modeling and Simulation in Materials Science and Engineering, 2009, 17, 1.
22 Read W T. Dislocation in crystal, McGraw Hill, America,1953.
23 Knezevic M, Levinson A, Harris R, et al. Acta Materialia, 2010, 58(19), 6230.
24 Kitazono K, Sato E, Kuribayashi K. Script Materialia, 2001, 44, 2695.
25 Liu X, Li L X, He F Y, et al. Transactions of Nonferrous Metals Society of China, 2013, 23(9), 2692.
26 Mecking H, Kocks U F. Acta Materialia, 1981, 29(11), 1865.
27 Kugler G, Turk R. Acta Materialia, 2004, 52(15), 4659.
28 Laasraoui A, Jonas J J. Metallurgical and Materials Transactions: A, 1991, 22(7), 1545.
29 Liu X, Zhu B W, Xie C, et al. Materials Science and Engineering: A, 2018, 733, 98.
[1] 杨康, 李东辉, 郭义林, 马刚, 耿昊, 李群芳, 薛继佳. 某型四座电动飞机复合材料机翼剪切性能试验与分析[J]. 材料导报, 2021, 35(Z1): 485-488.
[2] 孙朝海, 黄炎, 杨康, 姬书得, 岳玉梅. 工装模具对复合材料件固化变形影响的有限元分析[J]. 材料导报, 2021, 35(Z1): 607-612.
[3] 金贺荣, 张钊瑞, 韩民峰, 井士涛, 赵丁选. 表面粗糙度对热轧不锈钢复合板界面质量的影响[J]. 材料导报, 2021, 35(8): 8151-8156.
[4] 冯振宇, 范保鑫, 王纳斯丹, 韩雪飞, 李翰, 吴敬涛. 基于UMATHT子程序的玻璃纤维/乙烯基酯热响应数值模拟[J]. 材料导报, 2021, 35(2): 2191-2198.
[5] 陈宗平, 许瑞天, 梁厚燃. 高温喷水冷却后再生卵石混凝土应力-应变本构关系及有限元分析[J]. 材料导报, 2021, 35(13): 13032-13040.
[6] 赵昌方, 周志坛, 朱宏伟, 邢成龙, 任杰, 仲健林, 乐贵高. 锻造/层合碳纤维-环氧树脂复合材料压缩性能实验与仿真[J]. 材料导报, 2021, 35(12): 12209-12213.
[7] 赵宇航, 高莹, 王永旺, 陈东, 张云峰. 粉煤灰制硅酸盐防腐砖在复杂工况下的性能退化研究[J]. 材料导报, 2020, 34(Z2): 304-307.
[8] 樊卓志, 张书彦, 温树文, 向明, 林晏民, 张志明, 钟寿军, 王青松. 冷镦钢M6平头螺丝成型过程热-力耦合数值模拟研究[J]. 材料导报, 2020, 34(Z2): 399-406.
[9] 赵宇航, 王永旺. 硅酸盐胶黏剂在高温磨蚀条件下的退化行为[J]. 材料导报, 2020, 34(Z1): 181-184.
[10] 吴昊宇, 吴培红, 卞立波, 陶志. 纤维珠链在混凝土抗裂性能设计中的应用研究[J]. 材料导报, 2020, 34(Z1): 193-198.
[11] 任重, 黄兴元, 柳和生. 塑料微管气辅挤出成型实验与机理分析[J]. 材料导报, 2020, 34(20): 20193-20198.
[12] 刘兵飞, 刘艳艳, 周蕊. 航空发动机变形齿的新材料设计与力学性能[J]. 材料导报, 2020, 34(2): 2117-2122.
[13] 肖阳, 秦海勤, 徐可君. 基于Bodner-Partom理论的FGH96合金本构建模研究[J]. 材料导报, 2020, 34(16): 16125-16130.
[14] 吴奇, 李晓延, 孙鲁阳, 王小鹏. 2219铝合金焊接接头软化模型的建立与应用[J]. 材料导报, 2020, 34(10): 10138-10143.
[15] 丁新东, 曹新明. 不同膨胀剂掺量的钢管混凝土短柱轴压试验研究[J]. 材料导报, 2019, 33(Z2): 327-330.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed