Please wait a minute...
材料导报  2020, Vol. 34 Issue (20): 20193-20198    https://doi.org/10.11896/cldb.18100115
  高分子与聚合物基复合材料 |
塑料微管气辅挤出成型实验与机理分析
任重1,2, 黄兴元3, 柳和生4
1 江西科技师范大学光电子与通信重点实验室, 南昌 330038
2 江西科技师范大学光电检测与信息处理重点实验室, 南昌 330038
3 南昌大学机电工程学院, 南昌 330031
4 东华理工大学化学生物与材料科学学院, 南昌 330013
Experiment and Mechanism Analysis of Gas-assisted Extrusion Forming for Plastic Micro-tube
REN Zhong1,2, HUANG Xingyuan3, LIU Hesheng4
1 Key Laboratory of Optic-electronic and Communication, Jiangxi Science and Technology Normal University, Nanchang 330038, China
2 Key Laboratory of Optic-electronic Detection and Information Processing of Nanchang City, Jiangxi Science and Technology Normal University, Nanchang 330038, China
3 College of Mechanical and Electric Engineering, Nanchang University, Nanchang 330031, China
4 School of Chemical Biology and Materials Science, East China University of Technology, Nanchang 330013, China
下载:  全 文 ( PDF ) ( 4284KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了解决传统塑料微管挤出产生的挤出胀大、熔体破裂和挤出变形等问题,本工作采用内外双层气体辅助技术开展了塑料微管气辅挤出实验,并将其与传统挤出实验结果进行了对比。为了进一步揭示气辅技术可以消除传统挤出产生上述问题的机理,利用有限元方法对塑料微管气辅挤出和传统挤出进行了数值模拟和对比分析。实验结果表明,气辅技术不仅很好地克服了挤出胀大和挤出变形,而且使得挤出的塑料微管表面平整度、光泽度和透明度均有很大提高。数值结果表明,气辅技术较好地减小了熔体在口模流道内尤其是口模出口处的压力、剪切和法向应力差分布,使得塑料微管熔体在口模内的流动从黏着无滑移剪切流动转变为完全滑移无黏着流动,并且在口模出口处流速分布均匀且无突变和径向流速,从而较好地克服了塑料微管传统挤出方式产生的问题。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
任重
黄兴元
柳和生
关键词:  塑料微管  挤出成型  气辅技术  有限元分析    
Abstract: In order to solve the extrudate swell, extrusion fracture and extrusion distortion problems generated by the traditional extrusion of plastic micro-tubes, the inner and outer layers of gas-assisted technique was applied into the extrusion forming of plastic micro-tubes in this work. The gas-assisted extrusion experiments of plastic micro-tubes were carried out. The experimental results were compared with that of the traditional extrusion. To further ascertain the reason that the gas-assisted method can overcome the problems produced by traditional method, the numerical simulations of traditional method and gas-assisted extrusion method were performed and compared with each other. Experimental results show that the gas-assisted technique not only overcomes the extrudate swell of traditional extrusion of plastic micro-tubes, but also improves the glossiness and transparency on the surface of extruded plastic micro-tubes. Numerical results show that by using the gas-assisted method, the pressure, shear and normal stress difference distributions of melts in the channel of die are greatly eliminated, especially at the outlet of die, which results in the melt’s sticky and no-slip shear flow of traditional extrusion is changed into the full slip and no sticky flow. Moreover, at the outlet of die, the flow velocity distributions of melt are uniformed even without sudden change and radial flow velocity. Therefore, the extrusion problems of plastic micro-tubes are well solved by means of the gas-assisted technique.
Key words:  plastic micro-tube    extrusion forming    gas-assisted technique    finite element analysis
               出版日期:  2020-10-25      发布日期:  2020-11-06
ZTFLH:  TQ320.66+3  
基金资助: 国家自然科学基金(51763011); 江西省自然科学基金杰出青年项目(2018ACB21006);江西省自然科学基金面上项目 (20192BAB206016);江西省创新杰出青年人才(20192BCBL23015);南昌市光电检测与信息处理重点实验室项目(2019-NCZDSY-008)
通讯作者:  871692161@qq.com   
作者简介:  任重,江西科技师范大学光电子与通信重点实验室,副教授。2017年6月毕业于南昌大学,获得博士学位,主要从事高分子材料加工成型新技术及应用领域的研究。发表学术论文40余篇,SCI和EI检索30余篇。
引用本文:    
任重, 黄兴元, 柳和生. 塑料微管气辅挤出成型实验与机理分析[J]. 材料导报, 2020, 34(20): 20193-20198.
REN Zhong, HUANG Xingyuan, LIU Hesheng. Experiment and Mechanism Analysis of Gas-assisted Extrusion Forming for Plastic Micro-tube. Materials Reports, 2020, 34(20): 20193-20198.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18100115  或          http://www.mater-rep.com/CN/Y2020/V34/I20/20193
1 Wu D M, Li X L, Liu Y. Plastics, 2003(1), 26(in Chinese).
吴大鸣, 李晓林, 刘颖. 塑料, 2003(1),26.
2 Wang X, Wang H M, Xu Z B. China Plastics, 2015, 29(10),1(in Chinese).
王翔, 王惠明, 许忠斌. 中国塑料, 2015, 29(10),1.
3 Tian H Q, Zhao D Y, Wang M J, et al. Journal of Materials Processing Technology, 2015, 225,357.
4 Ansari M, Derakhshandeh M, Doufas A A, et al. Polymer Testing, 2018, 67,266.
5 Ren Z, Huang X Y, Liu H S. Journal of Central South University (Science and Technology), 2016, 47(4),1128(in Chinese).
任重, 黄兴元, 柳和生. 中南大学学报(自然科学版), 2016, 47(4),1128.
6 Liang J Z. Polymer, 2001, 42(8),3709.
7 Hayden T, Yvonne S, Heike E H. Journal of Fluid Mechanics, 2017,810,127.
8 Liang R F, Mackley M R. Journal of Rheology, 2001, 45(1), 211.
9 Ren Z, Huang X Y. Materials Science Forum, 2019, 956,253.
10 Ren Z, Huang X Y, Liu H S, et al. Journal of Sichuan University (Engineering Science Edition), 2016, 48(1),200(in Chinese).
任重, 黄兴元, 柳和生, 等. 四川大学学报(工程科学版), 2016, 48(1),200.
11 Huang C Y, Liu H S, Huang X Y, et al. China Plastics Industry, 2015, 43(10),44(in Chinese).
黄楚晔, 柳和生, 黄兴元,等. 塑料工业, 2015, 43(10),44.
12 Ren Z, Huang X Y. Materials Science Forum, 2016, 861,189.
13 Huang Y B, Yu Z, Xiong A H, et al. China Mechanical Engineering, 2017, 28(7),877(in Chinese).
黄益宾, 余忠, 熊爱华,等.中国机械工程, 2017, 28(7),877.
14 Ren Z, Huang X Y, Liu H S, et al. Journal of Applied Polymer Science, 2015, 132(42), 1.
15 Deng X Z, Liu H S, Huang Y B, et al. Journal of Central South University (Science and Technology), 2016, 47(7),2227(in Chinese).
邓小珍, 柳和生, 黄益宾,等. 中南大学学报(自然科学版), 2016, 47(7),2227.
16 Thien N P, Tanner R I. Journal of Non-Newtonian Fluid Mechanics, 1977, 2(4),353.
17 Dhadwal R, Banik S, Doshi P, et al. Applied Mathematical Modelling, 2017, 47,487.
18 He J T, Liu H S, Huang X Y, et al. China Plastics, 2014(5),64(in Chinese).
何建涛, 柳和生, 黄兴元,等.中国塑料, 2014(5),64.
19 Mitsoulis E, Heng F L. Rheologica Acta, 1987, 26, 414.
[1] 赵宇航, 王永旺. 硅酸盐胶黏剂在高温磨蚀条件下的退化行为[J]. 材料导报, 2020, 34(Z1): 181-184.
[2] 丁新东, 曹新明. 不同膨胀剂掺量的钢管混凝土短柱轴压试验研究[J]. 材料导报, 2019, 33(Z2): 327-330.
[3] 崔海坡, 张伟东, 宋成利, 王成勇, 张涛, 张春晓, 程千莉. 微创血管夹不同齿型对血管力学性能的影响[J]. 材料导报, 2019, 33(z1): 432-435.
[4] 崔岩, 倪浩晨, 曹雷刚, 杨越, 王一鸣. SiC颗粒整形对高体分铝基复合材料力学性能的影响及有限元模拟[J]. 材料导报, 2019, 33(24): 4126-4130.
[5] 高南沙,侯宏. 三维局域共振型声子晶体低频带隙特性研究[J]. 《材料导报》期刊社, 2018, 32(2): 322-326.
[6] 郭炜, 王德, 付远, 陆德平, 刘克明, 王渠东, 张利. 反复锻压剧烈塑性变形的有限元分析*[J]. CLDB, 2017, 31(8): 145-148.
[7] 方瑞杰,刘军,陈建恩,王肖锋. 多耦合拘束效应对P92钢蠕变裂纹扩展行为的影响*[J]. 材料导报编辑部, 2017, 31(22): 153-158.
[8] 刘红盼, 黄小凤, 马丽萍, 尚志标, 刘秀状, 赵丹, 蒋明. 基于有限元法模拟微晶玻璃的微晶化加热过程*[J]. 《材料导报》期刊社, 2017, 31(20): 164-169.
[9] 申祥,谢中敏,邓永泉,纪松. 冠状动脉支架纵向拉伸变形行为有限元分析*[J]. 材料导报编辑部, 2017, 31(10): 132-136.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed