Please wait a minute...
材料导报编辑部  2017, Vol. 31 Issue (22): 153-158    https://doi.org/10.11896/j.issn.1005-023X.2017.022.030
  计算模拟 |
多耦合拘束效应对P92钢蠕变裂纹扩展行为的影响*
方瑞杰,刘军,陈建恩,王肖锋
天津理工大学天津市先进机电系统设计与智能控制重点试验室,天津 300384
Dependence of Creep Crack Growth Behavior of P92 Steel on Multiple Coupling Constraints
FANG Ruijie, LIU Jun, CHEN Jianen, WANG Xiaofeng
Tianjin University of Technology, Tianjin Key Laboratory of the Design and Intelligent Control of the Advanced Mechanical System, Tianjin 300384
下载:  全 文 ( PDF ) ( 674KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于断裂力学理论,针对不同面内拘束效应下P92钢高温蠕变裂纹扩展(Creep crack growth, CCG)进行了数据模拟与分析。研究发现不同的拘束效应对CCG行为有着各异的影响,主要分析了试样几何形状、尺寸以及初始裂纹深度等对CCG行为的影响,并且着重研究比较这3种耦合拘束效应对CCG行为的影响程度。基于多种耦合拘束对CCG行为的影响程度做了横向比较,研究发现:试样几何形状对CCG行为的影响程度要大于几何尺寸,试样尺寸和初始裂纹深度对CCG行为的影响程度相似,试样形状比初始裂纹深度的影响程度更大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
方瑞杰
刘军
陈建恩
王肖锋
关键词:  拘束效应  P92钢  蠕变裂纹扩展  横向比较  有限元分析    
Abstract: Based on fracture mechanics, the creep crack growth (Creep crack growth, CCG) of P92 steel under the high temperatures was simulated and analyzed with different in-plane constraint effects. The study discovers that different constraint effects have an important influence for the behavior of CCG. The influence of specimen geometric shape, size and initial crack depth, especially their coupling constraintson on the behavior of CCG were analyzed. To compare the characteristics of the behavior of CCG under various coupling constraints, some results were found as follow. The effect of specimen geometry on the behavior of CCG is greater than the geometric size, and the effects of specimen size and the initial crack depth on the behavior of CCG are similar. The effects of specimen geometry on the behavior of CCG is greater than the initial crack depth.
Key words:  constraint effect    P92 steel    creep crack growth    horizontal comparison    finite element analysis
发布日期:  2018-05-08
ZTFLH:  TG142.73  
基金资助: *天津市自然科学基金(14JCYBJC19400);国家自然科学基金(11402170)
通讯作者:  刘军,男,1961年生,博士,教授,硕士研究生导师,主要研究方向为非线性转子动力学及控制E-mail:liujunjpna@163.com   
作者简介:  方瑞杰:男,1992年生,硕士研究生,主要研究方向为高温断裂力学E-mail:fangruijie_2012@163.com
引用本文:    
方瑞杰,刘军,陈建恩,王肖锋. 多耦合拘束效应对P92钢蠕变裂纹扩展行为的影响*[J]. 材料导报编辑部, 2017, 31(22): 153-158.
FANG Ruijie, LIU Jun, CHEN Jianen, WANG Xiaofeng. Dependence of Creep Crack Growth Behavior of P92 Steel on Multiple Coupling Constraints. Materials Reports, 2017, 31(22): 153-158.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.022.030  或          https://www.mater-rep.com/CN/Y2017/V31/I22/153
1 Shantung T U. Emerging challenges to structural integrity technology for high-temperature applications[J]. Frontiers Mechan Eng, 2007,2(4):375.
2 Viswanathan R, Stringer J. Failure mechanisms of high temperature components in power plants[J]. J Eng Mater Technol, 2000,122(3):246.
3 Davies C M, Dean D W, Yatomi M, et al. The influence of test duration and geometry on the creep crack initiation and growth behavior of 316H steel[J]. Mater Sci Eng A, 2009,510(18):202.
4 Zhang J W, Wang G Z, Xuan F Z, et al. In-plane and out-of-plane constraint effects on creep crack growth rate in Cr-Mo-V steel for wide range of C*[J]. Mater High Temperatures, 2015,32(5):512.
5 Zhao L, Jing H, Xu L, et al. Evaluation of constraint effects on creep crack growth by experimental investigation and numerical simulation[J]. Eng Fracture Mechan, 2012,96(96):251.
6 Zhao L, Xu L, Han Y, et al. Two-parameter characterization of constraint effect induced by specimen size on creep crack growth[J]. Eng Fracture Mechan, 2015,143(7):121.
7 Zhao L, Xu L, Han Y, et al. Quantifying the constraint effect induced by specimen geometry on creep crack growth behavior in P92 steel[J]. Int J Mechan Sci, 2015,94-95(5):63.
8 Zhao Lei, Research on life assessment method considering constraint effect for P92 pipe with defects at elevated temperature[D]. Tianjin: Tianjin University, 2012(in Chinese).
赵雷.考虑拘束效应的高温下含缺陷P92管道寿命评估方法研究[D].天津:天津大学,2012.
9 Nguyen B N, Onck P, Giessen E V D. Crack-tip constraint effects on creep fracture[J]. Eng Fracture Mechan, 2000,65(4):467.
10 Nguyen B N, Onck P, Giessen E V D. On higher-order crack-tip fields in creeping solids[J]. J Appl Mechan, 2000,67(2):372.
11 Jr A T Y, Sugiura R. Effects of component size, geometry, microstructure and aging on the embrittling behavior of creep crack growth correlated by the Q* parameter[J]. Eng Fracture Mechan, 2007,74(6):898.
12 Masaaki T, Kiyoshi K, Koichi Y. Effect of specimen size on creep crack growth rate using ultra-large CT specimens for 1Cr-Mo-V steel[J]. Eng Fracture Mechan, 1991,40(2):311.
13 Zhang J W, Wang G Z, Xuan F Z, et al. Prediction of creep crack growth behavior in Cr-Mo-V steel specimens with different constraints for a wide range of C*[J]. Eng Fracture Mechan, 2014,132(12):70.
14 Ma H S, Wang G Z, Liu S, et al. In-plane and out-of-plane unified constraint-dependent creep crack growth rate of 316H steel[J]. Eng Fracture Mechan, 2016,155(4):88.
15 Yang J, Wang G Z, Xuan F Z, et al. Unified characterization of in-plane and out-of-plane constraint based on crack-tip equivalent plastic strain[J]. Fatigue Fracture Eng Mater Structures, 2013,36(6):504.
16 Tan J P, Tu S T, Wang G Z, et al. Effect and mechanism of out-of-plane constraint on creep crack growth behavior of a Cr-Mo-V steel[J]. Eng Fracture Mechan, 2013,99(1):324.
17 Yatomi M, Davies C M, Nikbin K M. Creep crack growth simulations in 316H stainless steel[J]. Eng Fracture Mechan, 2008,75(18):5140.
18 Bin He, Jun Liu, Lanlan Tian. Numerical study of the side-groove effect on creep crack growth behavior in P92 steel[J]. Eng Fracture Mechan, 2017,171(2):64.
19 ASTME1457-07.Standard test method for measurement of creep crack growth times in metals[S].West Conshohocken: ASTM International, 2007.
20 Tan J P. Creep life assessment of structures containing crack incorporating constraint effect[D].Shanghai: East China University of Science and Technology, 2014(in Chinese).
谈建平. 纳入拘束效应的含裂纹结构蠕变寿命评价方法研究[D]. 上海:华东理工大学,2014.
[1] 冯超, 杨子帆, 刘曰利. SnBiAg无铅钎料恒温激光焊接的数值模拟与实验研究[J]. 材料导报, 2025, 39(3): 24010216-6.
[2] 方新宇, 徐干成, 魏迎奇, 刘彦泉, 袁伟泽, 周俊鹏. 新型高强钢板在结构抗接触爆炸中的应用[J]. 材料导报, 2024, 38(5): 23060206-7.
[3] 吴子豪, 苏荣华, 马超, 解帅, 冀志江, 王英翔, 王静. 轻骨料水泥基多功能吸波材料的制备及有限元分析[J]. 材料导报, 2024, 38(5): 23080253-7.
[4] 苏三庆, 邓瑞泽, 王威, 易术春, 左付亮, 刘馨为, 李俊廷. 基于金属磁记忆的弯曲工字钢梁的力-磁效应[J]. 材料导报, 2024, 38(4): 22070065-8.
[5] 陈守东, 陈敬琪, 李杰, 孙建, 卢日环. 复合成形轧制铜极薄带变形局部化的晶体塑性有限元模拟[J]. 材料导报, 2023, 37(2): 21050240-10.
[6] 陈守东, 卢日环, 孙建, 李杰. 异步冷轧少晶铜薄带局部变形的CP-FE模拟[J]. 材料导报, 2023, 37(14): 21120214-10.
[7] 李斌, 周薇. CFRP管约束混凝土柱轴压性能试验及有限元分析研究[J]. 材料导报, 2022, 36(Z1): 22040146-6.
[8] 杨康, 李东辉, 郭义林, 马刚, 耿昊, 李群芳, 薛继佳. 某型四座电动飞机复合材料机翼剪切性能试验与分析[J]. 材料导报, 2021, 35(Z1): 485-488.
[9] 孙朝海, 黄炎, 杨康, 姬书得, 岳玉梅. 工装模具对复合材料件固化变形影响的有限元分析[J]. 材料导报, 2021, 35(Z1): 607-612.
[10] 张忠科, 刘旭峰, 李昭, 雄健强. P92钢等离子弧焊接接头原位拉伸的SEM观察研究[J]. 材料导报, 2021, 35(24): 24128-24133.
[11] 余坤, 文立伟, 宦华松, 唐鹏刚. 缝合增强复合材料帽型加筋壁板界面拉脱性能[J]. 材料导报, 2021, 35(24): 24189-24194.
[12] 陈宗平, 许瑞天, 梁厚燃. 高温喷水冷却后再生卵石混凝土应力-应变本构关系及有限元分析[J]. 材料导报, 2021, 35(13): 13032-13040.
[13] 赵昌方, 周志坛, 朱宏伟, 邢成龙, 任杰, 仲健林, 乐贵高. 锻造/层合碳纤维-环氧树脂复合材料压缩性能实验与仿真[J]. 材料导报, 2021, 35(12): 12209-12213.
[14] 赵宇航, 高莹, 王永旺, 陈东, 张云峰. 粉煤灰制硅酸盐防腐砖在复杂工况下的性能退化研究[J]. 材料导报, 2020, 34(Z2): 304-307.
[15] 赵宇航, 王永旺. 硅酸盐胶黏剂在高温磨蚀条件下的退化行为[J]. 材料导报, 2020, 34(Z1): 181-184.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed