Please wait a minute...
材料导报编辑部  2017, Vol. 31 Issue (22): 153-158    https://doi.org/10.11896/j.issn.1005-023X.2017.022.030
  计算模拟 |
多耦合拘束效应对P92钢蠕变裂纹扩展行为的影响*
方瑞杰,刘军,陈建恩,王肖锋
天津理工大学天津市先进机电系统设计与智能控制重点试验室,天津 300384
Dependence of Creep Crack Growth Behavior of P92 Steel on Multiple Coupling Constraints
FANG Ruijie, LIU Jun, CHEN Jianen, WANG Xiaofeng
Tianjin University of Technology, Tianjin Key Laboratory of the Design and Intelligent Control of the Advanced Mechanical System, Tianjin 300384
下载:  全 文 ( PDF ) ( 674KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于断裂力学理论,针对不同面内拘束效应下P92钢高温蠕变裂纹扩展(Creep crack growth, CCG)进行了数据模拟与分析。研究发现不同的拘束效应对CCG行为有着各异的影响,主要分析了试样几何形状、尺寸以及初始裂纹深度等对CCG行为的影响,并且着重研究比较这3种耦合拘束效应对CCG行为的影响程度。基于多种耦合拘束对CCG行为的影响程度做了横向比较,研究发现:试样几何形状对CCG行为的影响程度要大于几何尺寸,试样尺寸和初始裂纹深度对CCG行为的影响程度相似,试样形状比初始裂纹深度的影响程度更大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
方瑞杰
刘军
陈建恩
王肖锋
关键词:  拘束效应  P92钢  蠕变裂纹扩展  横向比较  有限元分析    
Abstract: Based on fracture mechanics, the creep crack growth (Creep crack growth, CCG) of P92 steel under the high temperatures was simulated and analyzed with different in-plane constraint effects. The study discovers that different constraint effects have an important influence for the behavior of CCG. The influence of specimen geometric shape, size and initial crack depth, especially their coupling constraintson on the behavior of CCG were analyzed. To compare the characteristics of the behavior of CCG under various coupling constraints, some results were found as follow. The effect of specimen geometry on the behavior of CCG is greater than the geometric size, and the effects of specimen size and the initial crack depth on the behavior of CCG are similar. The effects of specimen geometry on the behavior of CCG is greater than the initial crack depth.
Key words:  constraint effect    P92 steel    creep crack growth    horizontal comparison    finite element analysis
                    发布日期:  2018-05-08
ZTFLH:  TG142.73  
基金资助: *天津市自然科学基金(14JCYBJC19400);国家自然科学基金(11402170)
通讯作者:  刘军,男,1961年生,博士,教授,硕士研究生导师,主要研究方向为非线性转子动力学及控制E-mail:liujunjpna@163.com   
作者简介:  方瑞杰:男,1992年生,硕士研究生,主要研究方向为高温断裂力学E-mail:fangruijie_2012@163.com
引用本文:    
方瑞杰,刘军,陈建恩,王肖锋. 多耦合拘束效应对P92钢蠕变裂纹扩展行为的影响*[J]. 材料导报编辑部, 2017, 31(22): 153-158.
FANG Ruijie, LIU Jun, CHEN Jianen, WANG Xiaofeng. Dependence of Creep Crack Growth Behavior of P92 Steel on Multiple Coupling Constraints. Materials Reports, 2017, 31(22): 153-158.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.022.030  或          http://www.mater-rep.com/CN/Y2017/V31/I22/153
1 Shantung T U. Emerging challenges to structural integrity technology for high-temperature applications[J]. Frontiers Mechan Eng, 2007,2(4):375.
2 Viswanathan R, Stringer J. Failure mechanisms of high temperature components in power plants[J]. J Eng Mater Technol, 2000,122(3):246.
3 Davies C M, Dean D W, Yatomi M, et al. The influence of test duration and geometry on the creep crack initiation and growth behavior of 316H steel[J]. Mater Sci Eng A, 2009,510(18):202.
4 Zhang J W, Wang G Z, Xuan F Z, et al. In-plane and out-of-plane constraint effects on creep crack growth rate in Cr-Mo-V steel for wide range of C*[J]. Mater High Temperatures, 2015,32(5):512.
5 Zhao L, Jing H, Xu L, et al. Evaluation of constraint effects on creep crack growth by experimental investigation and numerical simulation[J]. Eng Fracture Mechan, 2012,96(96):251.
6 Zhao L, Xu L, Han Y, et al. Two-parameter characterization of constraint effect induced by specimen size on creep crack growth[J]. Eng Fracture Mechan, 2015,143(7):121.
7 Zhao L, Xu L, Han Y, et al. Quantifying the constraint effect induced by specimen geometry on creep crack growth behavior in P92 steel[J]. Int J Mechan Sci, 2015,94-95(5):63.
8 Zhao Lei, Research on life assessment method considering constraint effect for P92 pipe with defects at elevated temperature[D]. Tianjin: Tianjin University, 2012(in Chinese).
赵雷.考虑拘束效应的高温下含缺陷P92管道寿命评估方法研究[D].天津:天津大学,2012.
9 Nguyen B N, Onck P, Giessen E V D. Crack-tip constraint effects on creep fracture[J]. Eng Fracture Mechan, 2000,65(4):467.
10 Nguyen B N, Onck P, Giessen E V D. On higher-order crack-tip fields in creeping solids[J]. J Appl Mechan, 2000,67(2):372.
11 Jr A T Y, Sugiura R. Effects of component size, geometry, microstructure and aging on the embrittling behavior of creep crack growth correlated by the Q* parameter[J]. Eng Fracture Mechan, 2007,74(6):898.
12 Masaaki T, Kiyoshi K, Koichi Y. Effect of specimen size on creep crack growth rate using ultra-large CT specimens for 1Cr-Mo-V steel[J]. Eng Fracture Mechan, 1991,40(2):311.
13 Zhang J W, Wang G Z, Xuan F Z, et al. Prediction of creep crack growth behavior in Cr-Mo-V steel specimens with different constraints for a wide range of C*[J]. Eng Fracture Mechan, 2014,132(12):70.
14 Ma H S, Wang G Z, Liu S, et al. In-plane and out-of-plane unified constraint-dependent creep crack growth rate of 316H steel[J]. Eng Fracture Mechan, 2016,155(4):88.
15 Yang J, Wang G Z, Xuan F Z, et al. Unified characterization of in-plane and out-of-plane constraint based on crack-tip equivalent plastic strain[J]. Fatigue Fracture Eng Mater Structures, 2013,36(6):504.
16 Tan J P, Tu S T, Wang G Z, et al. Effect and mechanism of out-of-plane constraint on creep crack growth behavior of a Cr-Mo-V steel[J]. Eng Fracture Mechan, 2013,99(1):324.
17 Yatomi M, Davies C M, Nikbin K M. Creep crack growth simulations in 316H stainless steel[J]. Eng Fracture Mechan, 2008,75(18):5140.
18 Bin He, Jun Liu, Lanlan Tian. Numerical study of the side-groove effect on creep crack growth behavior in P92 steel[J]. Eng Fracture Mechan, 2017,171(2):64.
19 ASTME1457-07.Standard test method for measurement of creep crack growth times in metals[S].West Conshohocken: ASTM International, 2007.
20 Tan J P. Creep life assessment of structures containing crack incorporating constraint effect[D].Shanghai: East China University of Science and Technology, 2014(in Chinese).
谈建平. 纳入拘束效应的含裂纹结构蠕变寿命评价方法研究[D]. 上海:华东理工大学,2014.
[1] 崔海坡, 张伟东, 宋成利, 王成勇, 张涛, 张春晓, 程千莉. 微创血管夹不同齿型对血管力学性能的影响[J]. 材料导报, 2019, 33(z1): 432-435.
[2] 高南沙,侯宏. 三维局域共振型声子晶体低频带隙特性研究[J]. 《材料导报》期刊社, 2018, 32(2): 322-326.
[3] 郭炜, 王德, 付远, 陆德平, 刘克明, 王渠东, 张利. 反复锻压剧烈塑性变形的有限元分析*[J]. CLDB, 2017, 31(8): 145-148.
[4] 刘红盼, 黄小凤, 马丽萍, 尚志标, 刘秀状, 赵丹, 蒋明. 基于有限元法模拟微晶玻璃的微晶化加热过程*[J]. 《材料导报》期刊社, 2017, 31(20): 164-169.
[5] 田兰兰, 刘军, 何滨, 陈建恩, 王肖锋, 葛为民. 基于C(t)积分及参数Ac的P92钢高温蠕变裂纹扩展研究*[J]. 《材料导报》期刊社, 2017, 31(18): 141-145.
[6] 申祥,谢中敏,邓永泉,纪松. 冠状动脉支架纵向拉伸变形行为有限元分析*[J]. 材料导报编辑部, 2017, 31(10): 132-136.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed