Please wait a minute...
材料导报  2024, Vol. 38 Issue (5): 23080253-7    https://doi.org/10.11896/cldb.23080253
  特种工程材料 |
轻骨料水泥基多功能吸波材料的制备及有限元分析
吴子豪1,2, 苏荣华3, 马超1, 解帅1, 冀志江1,2,*, 王英翔1, 王静1
1 中国建筑材料科学研究总院绿色建筑材料国家重点实验室,北京 100024
2 武汉理工大学材料科学与工程学院,武汉 430070
3 军事科学院国防工程研究院,北京 100850
Preparation and Finite Element Analysis of Lightweight Aggregate Cement-based Multi-function Absorbing Materials
WU Zihao1,2, SU Ronghua3, MA Chao1, XIE Shuai1, JI Zhijiang1,2,*, WANG Yingxiang1, WANG Jing1
1 State Key Laboratory of Green Building Materials, China Building Materials Academy, Beijing 100024, China
2 School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
3 Defense Engineering Institute, AMS, Beijing 100850, China
下载:  全 文 ( PDF ) ( 20145KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为分析轻骨料种类及粒径对吸波材料性能的影响,采用五种从微米级至毫米级粒径的轻骨料制备了轻质水泥基吸波材料,测试其电磁参数和反射损耗(RL),采用有限元分析方法构建了二维截面模型,模拟吸波材料内部电磁场分布情况,并测试了吸波材料的力学性能和导热系数。结果表明,增加轻骨料掺量和增大粒径可改善水泥基材料的阻抗匹配性能,提升平均RL,拓宽有效吸波频宽,吸收峰向高频移动。20 mm厚度时,吸波材料在低频1.2 GHz处最优RL为-29.1 dB,在较高频5.9 GHz处最优RL为-20.9 dB,有效吸波频宽最宽可达14.49 GHz。有限元模拟结果表明,轻骨料可改变电磁波传输方向,增加电磁波损耗途径,相邻骨料之间可产生较强损耗,其次是在骨料内部产生损耗,这为骨料种类、粒径选择与轻质吸波材料设计提供理论基础。增大轻骨料粒径会降低吸波材料的密度、力学强度与导热系数,使其吸波效能更好,保温效果更优。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴子豪
苏荣华
马超
解帅
冀志江
王英翔
王静
关键词:  骨料粒径  吸波材料  反射损耗  有限元分析  力学性能  导热系数    
Abstract: In order to analyze the effects of lightweight aggregate type and particle size on the properties of wave absorbing materials, five kinds of lightweight aggregate with particle sizes ranging from micron to millimeter were used to prepare lightweight cement-based absorbing materials, and their electromagnetic parameters and reflection loss (RL) were tested. 2D cross-section model was constructed by finite element analysis method to simulate the electromagnetic field distribution inside the wave absorbing materials. The mechanical properties and thermal conductivity of the wave absorbing materials were tested. The results show that the impedance matching performance of cement-based materials and the average RL are improved via increasing the content of lightweight aggregate and particle size, as well as broaden the effective absorption bandwidth, and the absorption peak is moved to high frequency. When the thickness is 20 mm, the optimal RL of the wave absorbing material is -29.1 dB at the low frequency of 1.2 GHz and -20.9 dB at the high frequency of 5.9 GHz, and the maximum effective absorbing bandwidth can reach 14.49 GHz. The finite element simulation results show that the electromagnetic wave transmission direction can be changed by adding lightweight aggregate, the electromagnetic wave loss path is increased, and a strong loss is produced between neighboring aggregates, then the loss occurs inside aggregate, which provides a theoretical basis for the selection of aggregate type, particle size and the design of lightweight absor-bing materials. The density, mechanical strength and thermal conductivity of wave absorbing materials are reduced via increasing the particle size of lightweight aggregate, the wave absorption efficiency and the heat preservation effect are better.
Key words:  aggregate size    absorbing materials    reflection loss    finite element analysis    mechanical property    thermal conductivity
出版日期:  2024-03-10      发布日期:  2024-03-18
ZTFLH:  TB34  
基金资助: 绿色建筑材料国家重点实验室探索项目(ZA-79)
通讯作者:  *冀志江,工学博士,教授级高级工程师,博士研究生导师,享受国务院政府特殊津贴专家。中国建筑材料科学研究总院绿色建筑材料国家重点实验室学术带头人。兼任中国建筑材料联合会生态环境建材分会副理事长,中国硅酸盐学会房建材料分会秘书长,建材行业环境友好与有益健康建筑材料标准化技术委员会主任委员,中国复合材料学会矿物复合材料专业委员会副主任委员,复旦大学、河北工业大学兼职导师等职。自2000年至今,主要致力于环境功能建材及其评价技术研究,开拓并发展环境功能建材新兴行业和生态环境建材新学科方向。承担国家自然科学基金、国家重点研发计划、国家科技支撑计划、863计划等各类科研课题20余项,获国家技术发明二等奖1项,获授权专利60余项,主持制定国家及行业标准50余部,发表学术论文160余篇,其中SCI/EI收录50余篇,出版专著5部。 jzj1618@126.com   
作者简介:  吴子豪,2018年6月、2021年7月分别于青岛科技大学和中国建筑材料科学研究总院获得工学学士学位和硕士学位。现为武汉理工大学材料科学与工程学院博士研究生,在冀志江教授的指导下进行研究。目前主要研究领域为电磁波防护材料。
引用本文:    
吴子豪, 苏荣华, 马超, 解帅, 冀志江, 王英翔, 王静. 轻骨料水泥基多功能吸波材料的制备及有限元分析[J]. 材料导报, 2024, 38(5): 23080253-7.
WU Zihao, SU Ronghua, MA Chao, XIE Shuai, JI Zhijiang, WANG Yingxiang, WANG Jing. Preparation and Finite Element Analysis of Lightweight Aggregate Cement-based Multi-function Absorbing Materials. Materials Reports, 2024, 38(5): 23080253-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23080253  或          https://www.mater-rep.com/CN/Y2024/V38/I5/23080253
1 Hu J, Liu Y, Jiang J, et al. Composite Structures, 2023, 312, 116886.
2 Liu T T, Cao M Q, Fang Y S, et al. Journal of Materials Science & Technology, 2022, 112, 329.
3 Xie S, Ji Z, Zhu L, et al. Journal of Building Engineering, 2020, 27, 100963.
4 Bian P, Zhan B, Gao P, et al. Construction and Building Materials, 2023, 364, 129903.
5 Xie S, Ji Z, Li B, et al. Composites Part A: Applied Science and Manufacturing, 2018, 114, 360.
6 Xie S, Jia Z Y, Cao Y X, et al. China Concrete and Cement Products, 2022(9), 62 (in Chinese).
解帅, 贾治勇, 曹延鑫, 等. 混凝土与水泥制品, 2022(9), 62.
7 Zhang X Z, Zheng P Q, Tao W H, et al. Journal of the Chinese Ceramic Society, 2023, 51(5), 1363 (in Chinese).
张秀芝, 郑沛祺, 陶文宏, 等. 硅酸盐学报, 2023, 51(5), 1363.
8 Jia X F, Chang Q, Cao X F, et al. Journal of Functional Materials, 2022, 53(12), 12028(in Chinese).
贾雪菲, 常乾, 曹雪芳, 等. 功能材料, 2022, 53(12), 12028.
9 Nam I W, Choi J H, Kim C G, et al. Composite Structures, 2018, 206, 439.
10 Ozturk M, Karaaslan M, Akgol O, et al. Cement and Concrete Research, 2020, 136, 106177.
11 Huang W, Wang X, Li Y Q, et al. Materials Reports, 2023, 37(7), 19 (in Chinese).
黄威, 王轩, 李永清, 等. 材料导报, 2023, 37(7), 19.
12 Ghosh S K, Nath K, Nath C S, et al. Chemical Engineering Journal Advances, 2023, 15, 100505.
13 Li J, Li H, Gao G, et al. Ceramics International, 2022, 48(24), 36029.
14 Deng S, Ai H M, Wang B M. Construction and Building Materials, 2022, 321, 126398.
15 Jung M, Lee Y S, Hong S G, et al. Cement and Concrete Research, 2020, 131, 106017.
16 Stefaniuk D, Sobótka M, Jarczewska K, et al. Cement and Concrete Composites, 2022, 134, 104732.
17 He Y, Lu L, Sun K, et al. Cement and Concrete Composites, 2018, 92, 1.
18 Zhao Q X, Zhang J R, Zhao R R. Journal of the Ceramic Society, 2011, 39(12), 2013 (in Chinese).
赵庆新, 张津瑞, 赵冉冉. 硅酸盐学报, 2011, 39(12), 2013.
19 Guan H, Liu S, Duan Y, et al. Cement and Concrete Composites, 2007, 29(1), 49.
20 Wang Z, Wang Z, Ning M. Construction and Building Materials, 2020, 259, 119863.
21 Li B, Ji Z J, Xie S, et al. Journal of Materials Science: Materials in Electronics, 2019, 30(13), 12416.
22 Liu B Y, Duan Y P, Zhang Y F, et al. Materials & Design, 2011, 32(5), 3017.
23 Tian K, Ding Q J, Hu S G. Journal of Building Materials, 2010, 13(3), 295 (in Chinese).
田焜, 丁庆军, 胡曙光. 建筑材料学报, 2010, 13(3), 295.
24 Ciuchi I V, Olariu C S, Mitoseriu L. Materials Science and Engineering: B, 2013, 178(19), 1296.
25 Sihvola A H, Alanen E. IEEE Transactions on Geoscience and Remote Sensing, 1991, 29(4), 679.
26 Wang X, Li Q, Lai H, et al. Composites Part B: Engineering, 2022, 242, 110071.
27 Jacobs L J, Owino J O. Journal of Engineering Mechanics, 2000, 126(11), 1124.
28 Mohseni H, Ng C T. Structural Health Monitoring, 2018, 18(1), 303.
29 Gao C, Sun B, Zhang Y. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 272, 107757.
30 Gao X, Wang J, Li X. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 224, 378.
31 Bora P J, Porwal M, Vinoy K J, et al. Composites Part B: Engineering, 2018, 134, 151.
32 Ding X, Huang Y, Li S, et al. Journal of Alloys and Compounds, 2016, 689, 208.
33 Cheon J, Lim S J, Kim M. Composites Science and Technology, 2020, 200, 108442.
34 Zhang C M. Stduy on particle size effect of concrete aggregate via mechanical experiments and peridynamics, Master's Thesis, Qingdao University of Technology, China, 2022 (in Chinese).
张晨明. 基于力学实验与近场动力学的混凝土骨料粒径效应研究. 硕士学位论文, 青岛理工大学, 2022.
35 Zhu L H, Liu H L, Han W. Materials Reports, 2023, 37(12), 117 (in Chinese).
朱丽华, 刘海林, 韩伟.材料导报, 2023, 37(12), 117.
36 Chen G, Li F, Geng J, et al. Construction and Building Materials, 2021, 294, 123572.
37 Jaya N A, Yun M L, Cheng Y. Construction and Building Materials, 2020, 247, 118641.
[1] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[2] 冯超, 杨子帆, 刘曰利. SnBiAg无铅钎料恒温激光焊接的数值模拟与实验研究[J]. 材料导报, 2025, 39(3): 24010216-6.
[3] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[4] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[5] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[6] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[7] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[8] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[9] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[10] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[11] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[12] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[13] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[14] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[15] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed