Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (2): 322-326    https://doi.org/10.11896/j.issn.1005-023X.2018.02.032
  物理   计算模拟 |材料 |
三维局域共振型声子晶体低频带隙特性研究
高南沙,侯宏
西北工业大学航海学院,西安 710072
Low Frequency Bandgap Characteristics of Three-dimensional Local Resonance Phononic Crystal
Nansha GAO,Hong HOU
School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072
下载:  全 文 ( PDF ) ( 5460KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

提出了一种三维局域共振型声子晶体结构,通过有限元仿真分析了该结构的低频带隙特性和多重振动耦合机理,继而研究了几何参数的影响因素。结果表明,该结构可以打开50 Hz以下的超低频带隙,其中基体材料和圆柱谐振子的振动耦合是带隙打开的关键,圆柱谐振子的下表面的振动位移越大,越容易打开带隙。中间层斜条部分密度对于带隙的下边界几乎没有影响,但是可使带隙的上边界往高频移动,带隙宽度变大。导致带隙变化的关键因素是中间层S2部分的长度和S1部分的角度。本工作丰富了三维声子晶体低频结构设计和等效模型研究,在工程实践中具有一定的指导价值。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高南沙
侯宏
关键词:  声子晶体  低频带隙  有限元分析  多重振动耦合    
Abstract: 

A kind of three-dimensional local resonance phononic crystal structure was proposed. By FEM calculation, low frequency bandgap characteristic, multiple vibration coupling mechanism and corresponding influence factors of geometric parameters were analyzed. Results show that this kind of structure can open ultra-low frequency bandgap under 50 Hz and critical factor is the vibration coupling effect between the matrix material and cylindrical harmonic oscillator. The more vibration displacement of lower surface on cylindrical harmonic oscillator is, the wider bandgap is. Density of middle oblique bar has no effect on the lower edge of bandgap, but makes the upper edge of bandgap move to the higher frequency range, and hence results in the change of bandgap. Length of middle oblique S2 section and angle of S1 section are the most important factor in bandgap. This study enriches the design and the equivalent model of three-dimensional phononic crystal frequency structure, which possesses a certain guiding value in engineering application.

Key words:  phononic crystal    low frequency bandgap    finite element analysis    multiple vibration coupling
               出版日期:  2018-01-25      发布日期:  2018-01-25
ZTFLH:  TB533  
  TB532  
  TU112.3  
基金资助: 国家自然科学基金面上项目(11474230);中央高校基本科研业务费(3102016QD056)
引用本文:    
高南沙,侯宏. 三维局域共振型声子晶体低频带隙特性研究[J]. 《材料导报》期刊社, 2018, 32(2): 322-326.
Nansha GAO,Hong HOU. Low Frequency Bandgap Characteristics of Three-dimensional Local Resonance Phononic Crystal. Materials Reports, 2018, 32(2): 322-326.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.02.032  或          http://www.mater-rep.com/CN/Y2018/V32/I2/322
Materials Density/(kg/m3) Young’s modulus/(1010 Pa) Shear modulus/(1010 Pa) Poisson’s ratio
Lead 11 600 4.08 1.49 0.369
Epoxy resin 1 180 0.435 0.159 0.368
Silicon rubber 1 300 1.175×10-5 4×10-6 0.469
表1  材料参数
图1  (a)、(b)三维局域共振型声子晶体结构;(c)中间层斜条部分平面图,(d)斜条部分的局部放大图
图2  (a)三维局域共振型声子晶体的能带结构;(b)能带结构的局部放大图(低于80 Hz)
图3  A点的模态振型图(电子版为彩图)
图4  B点的模态振型图(电子版为彩图)
图5  C点的模态振型图(电子版为彩图)
图6  D点的模态振型图(电子版为彩图)
图7  S0点的模态振型图(电子版为彩图)
图8  (a)圆柱谐振子上、下表面位移对比图;(b)局域共振单元的简化模型(电子版为彩图)
图9  中间层斜条(a)S1的角度、(b)S2的角度、(c)S1的长度、(d)S2的长度、(e)数目、(f)厚度和(g)密度的变化对带隙的影响
1 Martínez-Sala R, Sancho J, Sánchez J V , et al. Sound attenuation by sculpture[J]. Nature, 1995,378(6554):241.
2 James R, Woodley S M, Dyer C M , et al. Sonic bands, bandgaps, and defect states in layered structures: Theory and experiment[J]. The Journal of the Acoustic Society of America, 1995,97(4):2041.
3 Kushwaha M S, Djafari-Rouhani B, Dobrzynski L . Sound isolation from cubic arrays of air bubbles in water[J]. Physics Letters A, 1998,248(2):252.
4 4 温熙森, 温激鸿, 郁殿龙 , 等. 声子晶体[M]. 北京: 国防工业出版社, 2009.
5 Liu Z, Zhang X, Mao Y , et al. Locally resonant sonic materials[J]. Science, 2000,289(5485):1734.
6 Liu Z, Chan C T, Sheng P . Three-component elastic wave band-gap material[J]. Physical Review B, 2002,65(16):165116.
7 Liu Z, Chan C T, Sheng P . Analytic model of phononic crystals with local resonances[J]. Physical Review B, 2005,71(1):014103.
8 Hirsekorn M, Delsanto P P, Batra N K , et al. Modelling and simulation of acoustic wave propagation in locally resonant sonic materials[J]. Ultrasonics, 2004,42(1-9):231.
9 Wang G, Shao L H, Liu Y Z , et al. Accurate evaluation of lowest band gaps in ternary locally resonant phononic crystals[J]. Chinese Physics, 2006,15(8):1843.
10 Gan N, Wu J H, Yu L . Research on band gaps in two-dimensional phononic crystal with two resonators[J]. Ultrasonics, 2015,56:287.
11 Qi Pengshan, Du Jun, Jiang Jiulong , et al. Study of the phononic crystals bandgap properties of double local resonance mechanism[J]. Materials Review B:Research Papers, 2016,30(5):144(in Chinese).
12 祁鹏山, 杜军, 姜久龙 , 等. 双局域共振机制声子晶体带隙特性研究[J]. 材料导报:研究篇, 2016,30(5):144.
[1] 崔海坡, 张伟东, 宋成利, 王成勇, 张涛, 张春晓, 程千莉. 微创血管夹不同齿型对血管力学性能的影响[J]. 材料导报, 2019, 33(z1): 432-435.
[2] 张博强, 吴心平, 陈慧勇, 魏凤春, 朱丽峰, 李振涛, 李良. 局域共振型声子晶体在轮边驱动客车上的应用研究初探[J]. 材料导报, 2019, 33(z1): 141-144.
[3] 郭炜, 王德, 付远, 陆德平, 刘克明, 王渠东, 张利. 反复锻压剧烈塑性变形的有限元分析*[J]. CLDB, 2017, 31(8): 145-148.
[4] 方瑞杰,刘军,陈建恩,王肖锋. 多耦合拘束效应对P92钢蠕变裂纹扩展行为的影响*[J]. 材料导报编辑部, 2017, 31(22): 153-158.
[5] 刘红盼, 黄小凤, 马丽萍, 尚志标, 刘秀状, 赵丹, 蒋明. 基于有限元法模拟微晶玻璃的微晶化加热过程*[J]. 《材料导报》期刊社, 2017, 31(20): 164-169.
[6] 申祥,谢中敏,邓永泉,纪松. 冠状动脉支架纵向拉伸变形行为有限元分析*[J]. 材料导报编辑部, 2017, 31(10): 132-136.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed