Please wait a minute...
材料导报  2021, Vol. 35 Issue (12): 12209-12213    https://doi.org/10.11896/cldb.20030065
  高分子与聚合物基复合材料 |
锻造/层合碳纤维-环氧树脂复合材料压缩性能实验与仿真
赵昌方, 周志坛, 朱宏伟, 邢成龙, 任杰, 仲健林, 乐贵高
南京理工大学机械工程学院,南京 210094
Experiments and Simulations of Compression Properties of Forged/Laminated Carbon Fiber-Epoxy Resin Composites
ZHAO Changfang, ZHOU Zhitan, ZHU Hongwei, XING Chenglong, REN Jie, ZHONG Jianlin, LE Guigao
School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
下载:  全 文 ( PDF ) ( 4822KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 压缩性能是材料的基础力学性能之一,决定着材料在工程中的应用价值和应用范围。为了获得锻造碳纤维增强环氧树脂复合材料(FCFREP)和层合碳纤维增强环氧树脂复合材料(LCFREP)的压缩力学性能,进行了准静态实验和霍普金森压杆(Split Hopkinson pressure bars,SHPB)实验,得出了FCFREP和LCFREP在不同应变率下的真实应力-应变关系。通过扫描电子显微镜(SEM)观察了两种材料的破坏模式,进一步采用有限元软件进行了动态压缩仿真。实验结果表明,FCFREP的应变率效应仅体现在塑性段,且为负应变率效应;LCFREP的应变率效应明显,随着应变率增大,其弹性模量增大、屈服点滞后、流动应力增大。SEM结果表明,动态压缩情况下FCFREP的破坏模式为纤维撕裂拉断和剪切断裂,基体产生裂纹碎裂,LCFREP的动态压缩破坏模式为剪切断裂。仿真结果表明,FCFREP材料的动态压缩可采用双线性本构模型描述,LCFREP材料动态压缩的实际应力路径与仿真结果不同,但屈服极限相同。实验得出的真实应力-应变曲线可以作为研究新本构模型的依据,同时为开发新数值模型提供了参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵昌方
周志坛
朱宏伟
邢成龙
任杰
仲健林
乐贵高
关键词:  复合材料  碳纤维-环氧树脂  压缩性能  应变率效应  有限元分析    
Abstract: Compression property is one of the basic mechanical properties of materials, which determines the usage significance and scope of materials in engineering. To acquire the compression mechanical properties of forged carbon fiber reinforced epoxy composite (FCFREP) and laminated carbon fiber reinforced epoxy composite (LCFREP), the quasi-static experiments and split Hopkinson pressure bars (SHPB) experiments were performed, and the true stress-strain relationship at different strain rates were drawn. The failure types of the two materials were observed by scanning electron microscope (SEM), furthermore, the finite element analysis was used for dynamic compression simulation. The experimental results show that the strain rate effect of FCFREP is only reflected in the plastic stage, and it is a negative strain rate effect. However, the LCFREP has an obvious strain rate effect. With the increase of strain rate, its elastic modulus increases and yield point lags, and the flow stress increases. The SEM results show that the failure type of FCFREP under dynamic compression belongs to the fibers' tear and shear fracture, the matrix produces cracks to fragmentation, and dynamic compression failure type of LCFREP is shear fracture. The simulation results show that the dynamic compression of FCFREP can be described by bilinear constitutive model. The actual stress paths under dynamic compression of LCFREP are different from the simulation results, but their yield limit are the same. The true stress-strain curve obtained by experiments can be used as the basis for studying the new constitutive model, and it also provides a reference for the development of new numerical model.
Key words:  composites    carbon fiber-epoxy resin    compression property    strain rate effect    finite element analysis
               出版日期:  2021-06-25      发布日期:  2021-07-01
ZTFLH:  TB332  
  TB125  
基金资助: 国家自然科学基金(51303081;12002169);国家留学基金(201906845017);江苏省自然科学基金(BK20170837);江苏省研究生科研与实践创新计划(KYCX19_0327)
通讯作者:  renjie@njust.edu.cn   
作者简介:  赵昌方,2018年6月毕业于南京理工大学,获得工程学士学位。于2018年9月至今在南京理工大学攻读博士学位,主要从事兵器科学与技术、复合材料力学领域的研究。在国内外重要期刊发表文章30多篇,申报发明专利15余项。
任杰,南京理工大学副教授。2007年6月毕业于南京理工大学,获工程学博士学位。同年加入南京理工大学机械工程学院工作至今,主要从事复合材料力学、发射动力学领域的研究。在国内外重要期刊发表文章40多篇,申报发明专利30余项。
引用本文:    
赵昌方, 周志坛, 朱宏伟, 邢成龙, 任杰, 仲健林, 乐贵高. 锻造/层合碳纤维-环氧树脂复合材料压缩性能实验与仿真[J]. 材料导报, 2021, 35(12): 12209-12213.
ZHAO Changfang, ZHOU Zhitan, ZHU Hongwei, XING Chenglong, REN Jie, ZHONG Jianlin, LE Guigao. Experiments and Simulations of Compression Properties of Forged/Laminated Carbon Fiber-Epoxy Resin Composites. Materials Reports, 2021, 35(12): 12209-12213.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20030065  或          http://www.mater-rep.com/CN/Y2021/V35/I12/12209
1 Kim J K, Mai Y W. Composites Science and Technology, 1991, 41(4), 333.
2 Du X, Zhou H, Sun W, et al.Composites Science and Technology, 2017, 140, 123.
3 Zheng N, Huang Y D, Liu H Y, et al. Composites Science and Techno-logy, 2017, 140, 8.
4 Li Y, Cai S M, Huang X L. Composites Science and Technology, 2017, 143, 89.
5 Zhao C F, Zhou Z T, Ren J, et al. Composites: Mechanics, Computations, Applications: An International Journal, 2020, 11(4), 341.
6 Ma C G, Liu H Y, Du X S, et al. Composites Science and Technology, 2015, 114, 126.
7 Luo H B, Yan Y, Meng X J, et al. Composites Part B: Engineering, 2015, 87, 1.
8 Ma Y, Sugahara T, Yang Y, et al.Composite Structures, 2015, 123, 301.
9 Daei-Sorkhabi A H, Hosseinzadeh-Nodehi S F.Journal of Adhesion Science & Technology, 2019, 33(16), 1.
10 Zhou H, Du X, Liu H Y, et al.Composites Science and Technology, 2017, 140, 46.
11 Ochola R O, Marcus K, Nurick G N, et al.Composite Structures, 2004, 63(3-4), 455.
12 Hosur M V, Alexander J, Vaidya U K, et al.Composite Structures, 2004, 63(1), 75.
13 Zhu L Q, Zhu Z W, Zhang G H, et al. Journal of Chengdu University (Natural Science Edition), 2018, 37(3), 10 (in Chinese).
朱龙权, 朱志武, 张光瀚,等. 成都大学学报(自然科学版), 2018, 37(3), 10.
14 Song Zhenhua, Wang Zhihua, Ma Hongwei, et al.Composites Part B: Engineering, 2014, 60(4), 531.
15 Schmack T, Filipe T, Deinzer G, et al. Composite Structures, 2018, 189, 256.
16 Chocron S, Carpenter A J, Scott N, et al. International Journal of Impact Engineering, 2019, 131, 39.
17 Hosur M V, Adya M, Jeelani S, et al.Journal of Reinforced Plastics and Composites, 2004, 23(5), 491.
18 Sun B Y, Zhuang H P.Gaoxiao Shiyan Gongzuo Yanjiu, 2009, 100(2), 39 (in Chinese).
孙宝玉, 庄惠平.高校实验室工作研究, 2009, 100(2), 39.
19 Feng M D, Peng Y J, Liu Y Q, et al. Progress in Geophysics, 2006, 21(1), 273 (in Chinese).
冯明德, 彭艳菊, 刘永强,等. 地球物理学进展, 2006, 21(1), 273.
20 Chang K Y, Liu S, Chang F K. Journal of Composite Materials, 1991, 25(3), 274.
21 Fang Y Y. Study on dynamic mechanical properties of carbon fiber reinforced composite materials under high strain rate.Master's Thesis, Dalian University of Technology, China, 2018 (in Chinese).
方盈盈. 高应变率下碳纤维复合材料动态力学性能研究. 硕士学位论文, 大连理工大学, 2018.
[1] 聂金凤, 范勇, 赵磊, 刘相法, 赵永好. 颗粒增强铝基复合材料强韧化机制的研究新进展[J]. 材料导报, 2021, 35(9): 9009-9015.
[2] 张梦杰, 李翔, 乔师帅, 王元, 魏剑. 改性碳纳米管水泥基复合材料热电非平衡融冰性能[J]. 材料导报, 2021, 35(8): 8049-8055.
[3] 金琳, 杨永珍, 樊建锋, 许并社. 碳微球表面功能化对镁基复合材料的增强作用[J]. 材料导报, 2021, 35(8): 8093-8098.
[4] 赵中国, 贾旭妙, 程少华, 王渺, 梁攀旭, 李万顺, 贾仕奎. 聚丙烯/碳纳米管复合材料的结晶性能以及外场响应行为[J]. 材料导报, 2021, 35(8): 8191-8195.
[5] 张莲芝, 吴张永, 王庭有, 朱启晨, 郭翠霞, 蔡晓明, 莫子勇. 氧化锆添加量对四氧化三铁基复合材料性能的影响[J]. 材料导报, 2021, 35(6): 6035-6041.
[6] 刘敬福, 齐莉, 李广龙, 曲迎东. 真空搅拌TiCp/7075复合材料的组织、力学与耐磨性能[J]. 材料导报, 2021, 35(6): 6114-6119.
[7] 陈宇强, 张浩, 黄浩, 张文涛, 谢功园, 刘文辉, 潘素平, 宋宇峰, 刘阳. 基于高温扭转方法制备6061铝合金/304不锈钢层状复合材料的组织及性能[J]. 材料导报, 2021, 35(6): 6167-6173.
[8] 徐可, 陆春华, 宣广宇, 倪铭志, 张灵灵, 周隽, 徐荣进. 温度老化对GFRP/BFRP筋残余弯曲性能的影响[J]. 材料导报, 2021, 35(4): 4053-4060.
[9] 李爽, 刘和鑫, 杨永, 李青, 张之璐, 朱效宏, 杨长辉, 杨凯. 碱激发矿渣/偏高岭土复合胶凝材料干燥收缩机理研究[J]. 材料导报, 2021, 35(4): 4088-4091.
[10] 崔俊杰, 郭章新, 朱明, 李永存, 栾云博, 杨强. 表面带金属层的复合材料层合板低速冲击数值模拟[J]. 材料导报, 2021, 35(4): 4150-4158.
[11] 杨博, 余金山, 顾全超, 王洪磊, 周新贵. SiCf/SiC复合材料制备研究进展[J]. 材料导报, 2021, 35(3): 3050-3056.
[12] 李健, 左婷婷, 薛江丽, 茹亚东, 赵兴科, 高召顺, 韩立, 肖立业. 热压烧结及轧制工艺对CuCr/CNTs复合材料组织与性能的优化[J]. 材料导报, 2021, 35(2): 2078-2085.
[13] 王森, 赖家美, 阮金琦, 胡根泉, 黄志超. 不同粒子改性环氧树脂基碳纤维复合材料低速冲击及冲击后压缩性能[J]. 材料导报, 2021, 35(2): 2178-2184.
[14] 陈定宁, 沈昊宇, 成瑾瑾, 胡美琴. “枣糕状”结构杂多酸离子液体负载磁性复合材料的制备及超声脱硫的催化性能[J]. 材料导报, 2021, 35(12): 12181-12189.
[15] 孙茗, 庄景巍, 邓海亮, 陈子洋, 斯松华, 张瑞敏. 高温抗蠕变铝合金及铝基复合材料研究进展[J]. 材料导报, 2021, 35(11): 11137-11144.
[1] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Tao YAN,Guimin LIU,Shuo ZHU,Linfei DU,Yang HUI. Current Research Status of Electromagnetic Rail Materials Surface Failure and Strengthen Technology[J]. Materials Reports, 2018, 32(1): 135 -140 .
[4] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[5] Dingfa FU,Yu LENG,Wenli GAO. Effect of Microalloying Element Niobium on the Strength and Toughness of Low Carbon Cast Steels[J]. Materials Reports, 2018, 32(2): 237 -242 .
[6] YU Yan, MA Fengsen, LU Jiajun, CHEN Haibo. In Vitro Cytotoxicity Evaluation of Cellulose Absorbable Hemostatic Materials[J]. Materials Reports, 2018, 32(6): 874 -880 .
[7] SHI Yuanji, WU Xiaochun, MIN Na. Thermal Stability Mechanism of Fe-Cr-Mo-W-V Hot Working Die Steel[J]. Materials Reports, 2018, 32(6): 930 -936 .
[8] BAI Yuanrui, MA Jianzhong, LIU Junli, BAO Yan, CUI Wanzhao, HU Tiancun, WU Duoduo. Construction of Silver Film by Colloidal Crystal Template and Its Micro-discharge Inhibition Performance[J]. Materials Reports, 2018, 32(4): 515 -519 .
[9] LI Yong, ZHU Jing, WANG Ying, LI Huan, ZHAO Yaru. Formation Mechanism of Band Structure in Directionally Solidified Cu-0.33Cr-0.1Ti Hypoeutectic Alloy[J]. Materials Reports, 2018, 32(4): 602 -605 .
[10] LI Hui, CHEN Jiayong, DUAN Xiaoge, JIANG Haitao. Stability and TRIP Effect of Retained Austenite of Medium Manganese Q&P Steel[J]. Materials Reports, 2018, 32(4): 611 -615 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed