Please wait a minute...
材料导报  2021, Vol. 35 Issue (6): 6114-6119    https://doi.org/10.11896/cldb.19120183
  金属与金属基复合材料 |
真空搅拌TiCp/7075复合材料的组织、力学与耐磨性能
刘敬福1, 齐莉1, 李广龙2, 曲迎东2
1 辽宁工程技术大学材料科学与工程学院,阜新 123000
2 沈阳工业大学材料科学与工程学院,沈阳 110000
Microstructure, Mechanical Properties and Wear Resistance Performance of TiCp/7075 Matrix Composite by Vacuum Stirring
LIU Jingfu1, QI Li1, LI Guanglong2, QU Yingdong2
1 College of Materials Science and Engineering, Liaoning Technical University, Fuxin 123000, China
2 College of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110000, China
下载:  全 文 ( PDF ) ( 8771KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 采用真空辅助搅拌铸造法制备了TiCp/7075复合材料,利用XRD和SEM对复合材料进行物相分析和微观组织观察,研究了复合材料的力学性能和耐磨性能。结果表明,TiC增强体颗粒均匀分布在7075铝合金基体中,并且显著细化了基体合金的晶粒尺寸。TiC颗粒使基体合金的晶粒由200 μm的树枝晶转变为约100 μm的等轴晶。TiCp/7075复合材料的布氏硬度和抗拉强度分别为163HBW和362 MPa,较基体合金分别提高了20.7%和20.3%,这是细晶强化和颗粒承载机制共同作用的结果。TiC颗粒的加入有效改善了7075基体的耐磨性,在10 N载荷下,复合材料的磨损量为2.9 mg,较基体减少54.7%。复合材料在磨损过程中裸露的TiC硬质颗粒优先与对磨材料接触,减小了复合材料与对磨材料的有效接触面积,提高了复合材料的耐磨性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘敬福
齐莉
李广龙
曲迎东
关键词:  真空搅拌铸造  TiCp/7075复合材料  摩擦磨损    
Abstract: TiCp/7075 composites were prepared by vacuum assisted stirring casting. Phase analysis and microstructure observation of the composite were carried out by XRD and SEM. The mechanical properties and wear resistance of the composite were studied. The investigation shows that the TiC particles are evenly distributed in the 7075 aluminum alloy, and the grain size of as cast 7075 aluminum alloy are significantly refined. TiC particles make the grains shape of the matrix alloy change from 200 μm dendrites to 100 μm equiaxed shape. The Brinell hardness and tensile strength of the composites are 163HBW and 362 MPa, respectively, which are 20.7% and 20.3% higher than that of the matrix. Strengthening mechanism of the composites is fine grain and particle load share mechanism. The wear resistance of the matrix can be improved effectively by addition of TiC particles. Under 10 N load, the wear loss of the composites is 2.9 mg, which is 54.7% lower than the matrix. During the process of wear test, the exposed TiC particles preferentially contact with the wear-resistant material, reducing the effective contact area between the composites and the wear-resistant material, and improving the wear resistance of the composites.
Key words:  vacuum stir casting    TiCp/7075 composite    friction and wear
               出版日期:  2021-03-25      发布日期:  2021-03-23
ZTFLH:  TG146.2+1  
基金资助: 国家自然科学基金(51574167);辽宁省自然科学基金(201602356)
通讯作者:  869103636@qq.com   
作者简介:  刘敬福,辽宁工程技术大学材料科学与工程学院教授,辽宁省铸造学会副理事长。1996年7月本科毕业于北京科技大学表面科学与腐蚀工程系,2008年7月在沈阳工业大学材料加工工程专业取得博士学位。主要从事有色合金成形新技术和腐蚀机理的研究工作。近年来,在有色合金领域发表论文40余篇,其中SCI收录5篇,EI收录16篇。
引用本文:    
刘敬福, 齐莉, 李广龙, 曲迎东. 真空搅拌TiCp/7075复合材料的组织、力学与耐磨性能[J]. 材料导报, 2021, 35(6): 6114-6119.
LIU Jingfu, QI Li, LI Guanglong, QU Yingdong. Microstructure, Mechanical Properties and Wear Resistance Performance of TiCp/7075 Matrix Composite by Vacuum Stirring. Materials Reports, 2021, 35(6): 6114-6119.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19120183  或          http://www.mater-rep.com/CN/Y2021/V35/I6/6114
1 Dong G, Zhao C, Peng Y, et al. Chinese Journal of Mechanical Enginee-ring,2015,28(3),580.
2 Liu T, Su R M, Qu Y D, et al. Chinese Journal of Materials Research,2018,32(4),25(in Chinese).
刘桐,苏睿明,曲迎东,等.材料研究学报,2018,32(4),25.
3 Kumar S, Balasubramanian V. Wear,2008,264,1026.
4 Rao K V S, Govindaraju. Materials Today Proceedings,2017,4(10),11096.
5 Pazhouhanfar Y, Eghbali B. Materials Science & Engineering A,2018,710,172.
6 Kumar K S A, Murigendrappa S M, Kumar H. Journal of Materials Research,2019,34(7),1.
7 Losch K, Schuff S, Balle F, et al. Journal of Microscopy,2019,273(2),1.
8 George J, Janardhanan S, Sijo T M. Advanced Materials Research,2015,1119,533.
9 Huang L J, Geng L, Peng H X. Progress in Materials Science,2015,71,93.
10 Wang J T, Xie L, Luo K Y, et al. Surface and Coatings Technology,2018,349,725.
11 Roohollah R, Farshad A. International Journal of Materials Research,2018,109(6),545.
12 Huang G, Hou W, Shen Y. Materials Characterization,2018,138,26.
13 Yang H, Me Y. Acta Materiae Compositae Sinica,2018,35(4),927(in Chinese).
杨慧,么娆.复合材料学报,2018,35(4),927.
14 Saravanan C, Subramanian K, Anandakrishnan V, et al. Industrial Lubrication and Tribology,2018,70(6),1066.
15 Sijo M T, Jayadevan K R. Procedia Technology,2016,24,379.
16 Canakci A, Varol T. Powder Technology,2014,268,72.
17 Bai P C, Dai X J, Zhao C W, et al. Acta Materiae Compositae Sinica,2008,25(1),88(in Chinese).
白朴存,代雄杰,赵春旺,等.复合材料学报,2008,25(1),88.
18 Fang G, Yu Z, Tan Z, et al. Acta Metallurgica Sinica,2014,27(5),839.
19 Liang Y F, Dong S Q, Li G H. Rare Metal Materials and Engineering,2013,42(7),1377(in Chinese).
梁艳峰,董晟全,李高宏.稀有金属材料与工程,2013,42(7),1377.
20 Shangguan D, Ahuja S, Stefanescu D M. Metallurgical Transactions A,1992,23(2),669.
21 Shen P, Wang Y, Ren L, et al. Applied Surface Science,2015,355(15),930.
22 Qiu F, Tong H T, Shen P, et al. Acta Metallurgica Sinica,2019,55(1),91(in Chinese).
邱丰,佟昊天,沈平,等.金属学报,2019,55(1),91.
23 Kennedy A R,Weston D P, Jones M I. Materials Science and Engineering A,2001,316,32.
24 Singh M, Mondal D P, Modi O P, et al. Wear,2002,253,357.
25 Mabuchi M, Higashi K. Acta Materialia,1996,44(11),4611.
26 Zhang G F, Tan Y Q, Zhang B, et al. Materials Science Forum,2009,626,219.
27 Huang K, Jiang R P, Li X Q, et al. Journal of Materials Engineering,2019,47(12),78.
黄凯,蒋日鹏,李晓谦,等.材料工程,2019,47(12),78.
28 Kumar V, Gautam R K, Tyagi R. Composite Interfaces,2016,23,6.
[1] 胡学飞. 低熔点玻璃粉对水冷壁涂层组织和性能的影响[J]. 材料导报, 2021, 35(Z1): 189-194.
[2] 吴礼宁, 夏延秋, 吴浩, 陈中山, 曹亚楠, 侯冲. 纳米碳管/石墨烯导电硅脂的性能[J]. 材料导报, 2021, 35(6): 6189-6193.
[3] 刘云帆, 秦红玲, 韩翠红, 石佳东, 马国政, 王海斗. 自润滑关节轴承寿命试验及损伤失效机理研究现状[J]. 材料导报, 2021, 35(1): 1036-1045.
[4] 张洋, 张海燕, 陈蕴博, 王大鹏, 陈林, 刘晓萍. 热处理对热压制备Al-Cu-Mg/SiCp制动耐磨复合材料组织及磨损性能的影响[J]. 材料导报, 2020, 34(Z1): 356-360.
[5] 李亚林, 孙垒, 曹柳絮, 焦孟旺, 罗伟, 邱振宇, 王畅. 汽车制动盘用铝基复合材料摩擦磨损研究进展[J]. 材料导报, 2020, 34(Z1): 361-365.
[6] 秦笑, 王娟, 林高用, 郑开宏, 王海艳, 冯晓伟. 镀铜石墨/铜复合材料的组织和摩擦磨损性能[J]. 材料导报, 2020, 34(Z1): 380-384.
[7] 黄文豪, 陶平均, 龙德武, 张超汉, 朱坤森, 杨元政. 低树脂基NAO型盘式刹车片摩擦材料的制备及摩擦学性能[J]. 材料导报, 2020, 34(Z1): 563-566.
[8] 徐骏, 朱立坚, 刘刚, 宋炳坷. DLC-PFPE固液复合润滑体系的摩擦磨损性能研究[J]. 材料导报, 2020, 34(Z1): 567-571.
[9] 时运, 胡荣祥, 马骏, 杜培松, 陈曦, 杜晓东. 外加磁场对等离子熔覆Fe313合金涂层组织性能的影响[J]. 材料导报, 2020, 34(24): 24127-24131.
[10] 蒋晔, 颜建辉, 李茂键. 不同SPS烧结温度下制备WS2-Cu复合材料及其摩擦磨损性能[J]. 材料导报, 2020, 34(18): 18025-18029.
[11] 王宇, 曾伟, 韩靖, 戴光泽, 赵君文, 徐忠宣. 氮碳共渗对ER8车轮钢高温摩擦磨损性能的影响[J]. 材料导报, 2020, 34(18): 18119-18124.
[12] 王玮华, 谢发勤, 吴向清, 王少青, 姚小飞. 火箭橇滑块超声速、大载荷摩擦磨损失效机理[J]. 材料导报, 2020, 34(16): 16136-16139.
[13] 陈建锋, 王方明, 钟史放, 胡明金, 张江涛, 王凯冬, 李小兵. 多巴胺表面改性CNTs制备微纳双重结构的Ni/CNTs@pDA超疏水复合镀层[J]. 材料导报, 2019, 33(Z2): 568-572.
[14] 李梦楠, 赵宇光, 谢同伦. 不同蠕化率蠕墨铸铁的干滑动摩擦磨损性能[J]. 材料导报, 2019, 33(z1): 366-368.
[15] 郭策安, 赵宗科, 赵爽, 卢凤生, 赵博远, 张健. 电火花沉积AlCoCrFeNi高熵合金涂层的高速摩擦磨损性能[J]. 材料导报, 2019, 33(9): 1462-1465.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[5] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[8] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[9] YAN Haikuo, ZHENG Xiaoping, WANG Fan, BAO Jinbiao, WANG Shiwei. Adjusting Phase Morphology and Mechanical Properties of the Polymer Binary Blends by Supercritical CO2[J]. Materials Reports, 2018, 32(12): 2057 -2061 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed