Please wait a minute...
材料导报  2020, Vol. 34 Issue (18): 18025-18029    https://doi.org/10.11896/cldb.19070175
  机非金属及其复合材料 |
不同SPS烧结温度下制备WS2-Cu复合材料及其摩擦磨损性能
蒋晔1, 颜建辉1,2,3, 李茂键1
1 湖南科技大学材料科学与工程学院,湘潭 411201
2 湖南科技大学,高温耐磨材料及制备技术湖南省国防科技重点实验室,湘潭 411201
3 湖南科技大学,新能源储存与转换先进材料湖南省重点实验室,湘潭 411201
Preparation of WS2-Cu Composites Under Different SPS Sintering Temperatures and Their Friction and Wear Properties
JIANG Ye1, YAN Jianhui1,2,3, LI Maojian1
1 College of Materials Science and Technology, Hunan University of Science and Technology, Xiangtan 411201, China
2 Hunan Provincial Key Defense Laboratory of High Temperature Wear Resisting Materials and Preparation Technology, Hunan University of Science and Technology, Xiangtan 411201, China
3 Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan 411201, China
下载:  全 文 ( PDF ) ( 4483KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过在WS2表面镀Cu预处理获得Cu包覆的WS2粉末,并以纯Cu和Cu包覆WS2粉末为原料,利用放电等离子烧结技术(SPS)制备WS2-Cu复合材料,研究不同烧结温度下制备的复合材料的微观结构、力学性能和摩擦磨损性能。结果表明:烧结后的WS2-Cu复合材料中,WS2均匀分布在Cu基体中,WS2与Cu界面结合良好。随着烧结温度的升高,复合材料的硬度呈上升趋势。在500~750℃烧结温度所制备的WS2-Cu复合材料的摩擦因数较低(0.15~0.18),而在高于750℃烧结温度下所制备的复合材料的摩擦因数较大(0.42~0.54)。在700~750℃烧结温度下制备的WS2-Cu复合材料磨损率最低为(1.6~1.8)×10-5 mm3/(N·m)。WS2表面镀Cu处理提高了WS2-Cu复合材料的耐磨性能。WS2-Cu复合材料合适的SPS烧结温度为700~750℃。WS2-Cu复合材料在摩擦磨损过程中主要发生了不同程度的塑性变形、氧化磨损和粘着磨损。当WS2-Cu复合材料中WS2转变成W以后,复合材料的磨损表面还出现了明显的磨粒磨损现象。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蒋晔
颜建辉
李茂键
关键词:  表面镀铜  放电等离子烧结  烧结温度  WS2-Cu复合材料  摩擦磨损    
Abstract: WS2 powder coated with copper was prepared using electroless plating technology. The WS2-Cu matrix composites were prepared by spark plasma sintering technique (SPS) using pure Cu and Cu coated WS2 powders as raw materials. The microstructure, mechanical properties and friction and wear properties of WS2-Cu matrix composites prepared at different sintering temperatures were studied. The results show that WS2 is distributed uniformly in the copper matrix and the interface between Cu and WS2 bond well. With an increase in the sintering temperature, the hardness of composites shows an increasing trend. WS2-Cu composites prepared at 500—750℃ have low friction coefficients (0.15—0.18). However, the composites prepared over 750℃ have high friction coefficients (0.42—0.54). The composites prepared at 700—750℃ has the lowest wear rate of (1.6—1.8)×10-5 mm3/(N·m). The surface treatment of WS2 powder coated with Cu improves the wear resistance of WS2-Cu composites. The suitable SPS sintering temperature for preparing WS2-Cu composites is 700—750℃. The plastic deformation, oxidative wear and adhesive wear were occurred during the friction and wear process in the WS2-Cu composites. There was a significant abrasive wear on the wear surface of the WS2-Cu composite when the WS2 was transformed into W.
Key words:  coating with copper    spark plasma sintering    sintering temperature    WS2-Cu composite    friction and wear
                    发布日期:  2020-09-12
ZTFLH:  TG146.1  
基金资助: 国家自然科学基金(51475161);湖南省自然科学基金(2020JJ4025);湖南省研究生科研创新项目(CX20190837)
通讯作者:  yanjianhui88@163.com   
作者简介:  蒋晔,2017年6月毕业于湖南科技大学,获得学士学位。于2017年9月至今在湖南科技大学材料科学与工程学院攻读硕士学位,主要从事复合材料的摩擦性能研究。
颜建辉,湖南科技大学教授,博士研究生导师。2009年6月获中南大学粉末冶金国家重点实验室博士学位。在国内外学术期刊上发表论文60余篇,申请国家发明专利6项,其中授权4项。主要研究方向包括:新型高温结构材料研发、材料抗高温氧化防护、材料表面减摩耐磨技术、材料强韧化等。主持国家自然科学基金面上项目、国防基础研究项目、湖南省自然科学基金、湖南省科技计划项目等。
引用本文:    
蒋晔, 颜建辉, 李茂键. 不同SPS烧结温度下制备WS2-Cu复合材料及其摩擦磨损性能[J]. 材料导报, 2020, 34(18): 18025-18029.
JIANG Ye, YAN Jianhui, LI Maojian. Preparation of WS2-Cu Composites Under Different SPS Sintering Temperatures and Their Friction and Wear Properties. Materials Reports, 2020, 34(18): 18025-18029.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19070175  或          http://www.mater-rep.com/CN/Y2020/V34/I18/18025
1 Rajkumar K, Aravindan S. Tribology International,2011, 44, 347.
2 Surekha K, Els-BotesA. Materials and Design, 2011, 32, 911.
3 Akbarpour M R, Alipour S. Ceramics International, 2017, 43, 13364.
4 Tjong S C, Lau K C. Materials Letters, 2000, 43, 274.
5 Moustafa S F, Abdel-Hamid Z, Abd-Elhay A M,et al. Materials Letters, 2002, 53, 244.
6 Eze A A, Jamiru T, Sadiku E R,et al. Journal of Alloys and Compounds, 2018, 736, 163.
7 Bai X B, Li J L, Wang Y X,et al. Surface Technology, 2017(11), 62(in Chinese).
白雪冰, 李金龙, 王永欣, 等.表面技术,2017(11), 62.
8 Hu Y Y, Liu Y, Zhang J B,et al. Nonferrous Metal Materials and Engineering, 2016(4), 165(in Chinese).
胡艳艳, 刘耀, 张建波, 等.有色金属材料与工程, 2016(4), 165.
9 Qian G, Feng Y, Zhang X B, et al. Surface Technology, 2016, 45(1), 7(in Chinese).
钱刚,凤仪,张学斌, 等.表面技术,2016, 45(1), 7.
10 Zhang Y D. Preparation and properties of Cu/Cu-MoS2 self-lubricating composite.Master's Thesis, Henan University of Science and Technology, China, 2014(in Chinese).
张银娣.自润滑Cu/Cu-MoS2复合材料的制备及性能研究.硕士学位论文,河南科技大学, 2014.
11 Qian G, Feng Y, Chen Y M,et al. Transactions of Nonferrous Metals Society of China, 2015, 25, 1984.
12 Xu S H, Zheng J Y, Hao J Y,et al. Materials and Design, 2016, 93, 494.
13 Tyagi R, Das A K, Mandal A,et al. Tribology International, 2018, 120, 80.
14 Aldana P U, Dassenoy F, Vacher B,et al. Tribology Transactions, 2016, 59, 178.
15 Rapoport L,Lvovsky M, Lapsker I,et al. Wear, 2001, 249, 149.
16 Rapoport L,Leshchinsky V, Lvovsky M,et al. Wear, 2002, 252, 518.
17 Zhang X D, Chui Y T, Ma J,et al. Nonferrous Metals (Extractive Metallurgy), 2016(1), 53(in Chinese).
张晓丹, 崔云涛, 马捷, 等.有色金属(冶炼部分), 2016(1), 53.
18 Huang X, Wang G Q, He Z K, et al. Materials for Mechanical Enginee-ring, 2002(11), 33(in Chinese).
黄鑫,王贵青,贺子凯,等.机械工程材料,2002(11), 33.
19 Zhang X L,Chen Y, Du S M,et al. Journal of Henan University of Science and Technology (Natural Science), 2017(4), 1(in Chinese).
张学良, 陈跃, 杜三明, 等.河南科技大学学报(自然科学版), 2017(4), 1.
20 Zhou J, Ma C, Kang X,et al. Transactions of Nonferrous Metals Society of China, 2018, 28, 1176.
21 Zhao L, Yao P P, Xiao Y L,et al. Materials Science and Engineering of Powder Metallurgy, 2013(4), 477(in Chinese).
赵林, 姚萍屏,肖叶龙, 等.粉末冶金材料科学与工程, 2013(4), 477.
22 Xiao J K, Zhang W, Zhang C. Wear, 2018, 412, 109.
23 Chen B B, Yang J, Zhang Q,et al. Materials and Design, 2015, 75, 24.
[1] 张洋, 张海燕, 陈蕴博, 王大鹏, 陈林, 刘晓萍. 热处理对热压制备Al-Cu-Mg/SiCp制动耐磨复合材料组织及磨损性能的影响[J]. 材料导报, 2020, 34(Z1): 356-360.
[2] 李亚林, 孙垒, 曹柳絮, 焦孟旺, 罗伟, 邱振宇, 王畅. 汽车制动盘用铝基复合材料摩擦磨损研究进展[J]. 材料导报, 2020, 34(Z1): 361-365.
[3] 秦笑, 王娟, 林高用, 郑开宏, 王海艳, 冯晓伟. 镀铜石墨/铜复合材料的组织和摩擦磨损性能[J]. 材料导报, 2020, 34(Z1): 380-384.
[4] 黄文豪, 陶平均, 龙德武, 张超汉, 朱坤森, 杨元政. 低树脂基NAO型盘式刹车片摩擦材料的制备及摩擦学性能[J]. 材料导报, 2020, 34(Z1): 563-566.
[5] 徐骏, 朱立坚, 刘刚, 宋炳坷. DLC-PFPE固液复合润滑体系的摩擦磨损性能研究[J]. 材料导报, 2020, 34(Z1): 567-571.
[6] 王宇, 曾伟, 韩靖, 戴光泽, 赵君文, 徐忠宣. 氮碳共渗对ER8车轮钢高温摩擦磨损性能的影响[J]. 材料导报, 2020, 34(18): 18119-18124.
[7] 王玮华, 谢发勤, 吴向清, 王少青, 姚小飞. 火箭橇滑块超声速、大载荷摩擦磨损失效机理[J]. 材料导报, 2020, 34(16): 16136-16139.
[8] 张丛, 曹剑武, 林广庆, 王成, 刘发付, 郭建斌, 郭在在, 乔光利, 庄杰, 黄维平. 烧结温度对AlON性能的影响[J]. 材料导报, 2019, 33(Z2): 158-160.
[9] 陈建锋, 王方明, 钟史放, 胡明金, 张江涛, 王凯冬, 李小兵. 多巴胺表面改性CNTs制备微纳双重结构的Ni/CNTs@pDA超疏水复合镀层[J]. 材料导报, 2019, 33(Z2): 568-572.
[10] 李梦楠, 赵宇光, 谢同伦. 不同蠕化率蠕墨铸铁的干滑动摩擦磨损性能[J]. 材料导报, 2019, 33(z1): 366-368.
[11] 郭策安, 赵宗科, 赵爽, 卢凤生, 赵博远, 张健. 电火花沉积AlCoCrFeNi高熵合金涂层的高速摩擦磨损性能[J]. 材料导报, 2019, 33(9): 1462-1465.
[12] 庄伟彬, 田宗伟, 刘广柱, 孙跃军. 原位自生TiCp/6061复合材料的组织、硬度及耐磨性能[J]. 材料导报, 2019, 33(22): 3762-3767.
[13] 聂豫晋, 戴建伟, 章晓波. Mg-3Gd-1Zn合金在模拟体液中的腐蚀与磨损协同作用[J]. 材料导报, 2019, 33(18): 3057-3061.
[14] 惠阳, 刘贵民, 闫涛, 杜林飞, 周雳. 载流摩擦磨损研究现状及展望[J]. 材料导报, 2019, 33(13): 2272-2280.
[15] 蒋智秋, 陈泉志, 董婉冰, 童庆, 李伟洲. Al对激光熔覆镍基合金涂层组织与性能的影响[J]. 材料导报, 2019, 33(12): 2035-2039.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed