Please wait a minute...
材料导报  2019, Vol. 33 Issue (12): 2035-2039    https://doi.org/10.11896/cldb.18030211
  金属与金属基复合材料 |
Al对激光熔覆镍基合金涂层组织与性能的影响
蒋智秋1, 陈泉志1, 董婉冰1, 童庆1, 李伟洲1,2
1 广西大学资源环境与材料学院,南宁 530004
2 广西有色金属及特色材料加工重点实验室,南宁 530004
Effect of Aluminum on Microstructure and Performance of Laser CladdingNi-based Alloy Coating
JIANG Zhiqiu1, CHEN Quanzhi1, DONG Wanbing1, TONG Qing1, LI Weizhou1,2
1 School of Resoures, Environment and Materials, Guangxi University, Nanning 530004
2 Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004
下载:  全 文 ( PDF ) ( 3566KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 为了提高球墨铸铁熔覆镍基合金涂层的性能,分别向镍基合金中添加0%、2%、4%、6%、8%(质量分数,下同)的Al。通过SEM、XRD、显微硬度、摩擦磨损、高温氧化实验分析了不同Al添加量对镍基合金熔覆层的显微组织、硬度、耐磨性能、抗高温氧化性能的影响。结果表明, Al的添加能提高镍基熔覆层的成型性,但当Al含量超过4%时,熔覆层出现了贯穿性裂纹缺陷。通过预置镍基中间过渡层,在无裂纹缺陷的前提下,可以将熔覆层中外加Al含量由原来的4%提高至8%。显微硬度实验表明,8%Al熔覆层的显微硬度最大,为740HV,是0%Al熔覆层的1.85倍。摩擦磨损实验表明,6%Al熔覆层上午耐磨性最好,磨损量仅为0%Al熔覆层的25%。850 ℃高温氧化实验表明,8%Al熔覆层在氧化120 h后的抗氧化性最好,氧化产物为Al2O3、NiCr2O4、(Fe,Cr)2O3、γ-Ni,氧化增重为1.89 mg/cm2,仅为0%Al熔覆层的35%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蒋智秋
陈泉志
董婉冰
童庆
李伟洲
关键词:  球墨铸铁  激光熔覆  摩擦磨损  高温氧化    
Abstract: In order to improve the performance of Ni based alloy coating 0wt%, 2wt%, 4wt%, 6wt% and 8wt% Al elements were added to Ni based alloy.The effects of Al addition on the wear resistance,high temperature oxidation resistance and thermal fatigue resistance of Ni based alloy were analyzed by SEM, XRD, friction and wear, high temperature oxidation and thermal shock test. The results show that, with the addition of aluminum could significantly improve the cladding formability, but when the aluminum content was more than 4wt%, the cracks appeared. By presetting the Ni based intermediate layer, the content of Al in the coatings could be increased from 4wt% to 8wt% at the premise of no crack defect. The microhardness experiment showed that when the aluminum content was 8wt%, the microhardness of the coating was 740HV, which was 1.85 times of that of the nickel-based coating. The tests of friction and wear showed that the wear resistance of the coating was best at the aluminum content of 6wt% which wear mass loss was 25% of the nickel-based coating. The high temperature oxidation results showed that the oxidation resistance of the coating with 8wt% aluminum content after 850 ℃/120 h oxidation was the best, the Al2O3, NiCr2O4, (Fe,Cr)2O3 and γ-Ni phases formed on the annealed coating, and the oxidation weight gain rate was 1.89 mg/cm2, which was only 35% of the nickel-based coating.
Key words:  nodular cast iron    laser cladding    friction and wear    high temperature oxidation
               出版日期:  2019-06-20      发布日期:  2019-05-31
ZTFLH:  TG174  
基金资助: 国家自然科学基金(51371059;51001032);广西科技重大专项(AA18118030;AA17204100);广西自然科学基金项目(2014GXNSFCA118013;2016GXNSFDA380022);广西高等学校高水平创新团队项目(第二批)
通讯作者:  liwz2008@hotmail.com   
作者简介:  蒋智秋,2017年12月毕业于广西大学,获得工程硕士学位。主要从事激光熔覆再制造领域的研究。李伟洲,博士(后),研究员,博士生导师。广西高等学校卓越学者,南京市“321”科技创业人才计划。主要从事材料的腐蚀及表面防护研究工作。在 Corrosion Science、Applied Surface Science、Surface and Coatings Technology、Journal of Materials Research等国际重要学术刊物上合作发表学术论文90余篇,授权国家发明专利10余项。
引用本文:    
蒋智秋, 陈泉志, 董婉冰, 童庆, 李伟洲. Al对激光熔覆镍基合金涂层组织与性能的影响[J]. 材料导报, 2019, 33(12): 2035-2039.
JIANG Zhiqiu, CHEN Quanzhi, DONG Wanbing, TONG Qing, LI Weizhou. Effect of Aluminum on Microstructure and Performance of Laser CladdingNi-based Alloy Coating. Materials Reports, 2019, 33(12): 2035-2039.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18030211  或          http://www.mater-rep.com/CN/Y2019/V33/I12/2035
1 Li Yongjian, Dong Shiyun, Yan Shixing, et al.Surface and Coatings Technology, 2018,339,37.
2 Zhang W J. Research on the visual recognition technology of laser repair mould.Masters Thesis,Taiyuan University of Science & Technology, China, 2015 (in Chinese).
张伟杰. 模具激光修复的视觉识别技术研究. 硕士学位论文, 太原科技大学, 2015.
3 Xu X, Mi G, Chen L, et al. Journal of Alloys & Compounds, 2017,715(8),81.
4 Xiao Y, Gu J F, Zhang Y L, et al.Materials Reviev B:Research Papers, 2017, 31(11),65 (in Chinese).
肖轶, 顾剑峰, 张有利,等. 材料导报:研究篇,2017,31(11),65.
5 Tan C, Zhu H, Kuang T, et al. Journal of Alloys & Compounds, 2017, 690(1),108.
6 Zhong L, Li R G, Zhang X L. Journal of Mechanical Engineering, 2017, 53(2),67 (in Chinese).
宗琳, 李荣广, 张小玲. 机械工程学报, 2017, 53(2),67.
7 Jiang J B, Lian G F, Xu M S. Journal of Chongqing University of Technology (Natural Science), 2015, 29(1),27(in Chinese).
江吉彬, 练国富, 许明三. 重庆理工大学学报(自然科学), 2015, 29(1),27.
8 Li J L, Cheng C Z. Modern Welding Technology, 2011, 1(97), 13 (in Chinese).
李嘉宁, 陈传忠. 现代焊接, 2011, 1(97), 13.
9 Sun Y Z, Liu S, Li J B, et al. Materials Reviev B:Research Papers, 2017, 31(2),75(in Chinese).
孙有政, 刘帅, 李进宝等. 材料导报:研究篇, 2017,31(2),75.
10Wang Y Q, Guo P D, Qi H B. Applied Laser, 2017,37(6),825(in Chinese).
王玉乔, 郭鹏达, 齐海波. 应用激光, 2017,37(6),825.
11Cai Y, Luo Z, Feng M, et al. Surface & Coatings Technology, 2016, 291(4),222.
12Wang X, Zhou S, Dai X, et al.International Journal of Refractory Metals & Hard Materials, 2016, 64(4),234.
13Weng F, Yu H, Chen C, et al. Journal of Alloys & Compounds, 2016, 686(11),74.
14Liu W, Lei Y W, et al. Chinese Journal of Lasers, 2013, 40(10),103 (in Chinese).
牛伟, 雷贻文, 等.中国激光, 2013, 40(10),103.
15Liu H X, Tang S J, Cai C X, et al.Chinese Journal of Lasers, 2013, 40(6),156 (in Chinese).
刘洪喜, 唐淑君, 蔡川雄,等. 中国激光, 2013,40(6),156.
16Wang Z J, Zhao Q H, Shang X F, et al. Laser & Infrared, 2012, 42(11),1244 (in Chinese).
王志坚, 赵青贺, 尚晓峰, 等. 激光与红外, 2012, 42(11),1244.
17Zhou F, Liu Q B, Zheng B.High Power Laser and Particle Beams, 2015,27(11),266(in Chinese).
周芳, 刘其斌, 郑波. 强激光与粒子束, 2015, 27(11),266.
18Lin W M, Duan J F, Liu H Z, et al. Foundry Equipment and Technology, 2009(1),53 (in Chinese).
林万明, 段剑锋, 刘鸿泽, 等. 铸造设备与工艺, 2009(1),53.
19Li W, Zhang R L.Journal of Changchun University, 1999, 9(1),11 (in Chinese).
李文, 张瑞林. 长春大学学报, 1999, 9(1),11.
20Li W, Cheng D F, Guang Z Z, et al.Acta Physica Sinica, 1998, 47(12),2064 (in Chinese).
李文, 陈岱发, 关振中,等. 物理学报, 1998, 47(12),2064.
21Jiang S Y, Li S C. Materials Reviev B:Research Papers, 2010, 24(9),72 (in Chinese).
蒋淑英, 李世春. 材料导报:研究篇,2010, 24(9),72.
22Zhang Y G, Han Y F, Cheng G L. Structural intermetallics, National Defense Industry Press, China, 2001 (in Chinese).
张永刚, 韩雅芳, 陈国良. 金属间化合物结构材料,国防工业出版社,2001.
[1] 温俊霞, 曹睿, 李骏鹏, 曾茂燕, 陈璟. 球墨铸铁表面CMT堆焊H08Mn2Si焊丝的研究[J]. 材料导报, 2019, 33(Z2): 447-451.
[2] 陈建锋, 王方明, 钟史放, 胡明金, 张江涛, 王凯冬, 李小兵. 多巴胺表面改性CNTs制备微纳双重结构的Ni/CNTs@pDA超疏水复合镀层[J]. 材料导报, 2019, 33(Z2): 568-572.
[3] 姜志鹏, 陈小明, 赵坚, 张磊, 伏利, 刘伟. 激光熔覆技术制备非晶涂层的研究进展与展望[J]. 材料导报, 2019, 33(z1): 191-194.
[4] 李梦楠, 赵宇光, 谢同伦. 不同蠕化率蠕墨铸铁的干滑动摩擦磨损性能[J]. 材料导报, 2019, 33(z1): 366-368.
[5] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[6] 郭策安, 赵宗科, 赵爽, 卢凤生, 赵博远, 张健. 电火花沉积AlCoCrFeNi高熵合金涂层的高速摩擦磨损性能[J]. 材料导报, 2019, 33(9): 1462-1465.
[7] 陈文龙, 刘敏, 张吉阜, 邓子谦, 肖晓玲, 唐维学. 等离子喷涂-物理气相沉积7YSZ热障涂层高温氧化过程中的阻抗谱分析[J]. 材料导报, 2019, 33(4): 605-606.
[8] 谢敏, 王梅丰, 戴晓琴, 雷剑波, 王春霞, 周圣丰. 综论偏晶合金的制备技术:外场下凝固、快速凝固及激光技术[J]. 材料导报, 2019, 33(3): 490-499.
[9] 庄伟彬, 田宗伟, 刘广柱, 孙跃军. 原位自生TiCp/6061复合材料的组织、硬度及耐磨性能[J]. 材料导报, 2019, 33(22): 3762-3767.
[10] 范鹏飞,孙文磊,张冠,王恪典. 激光熔覆铁基合金梯度涂层的组织性能及应用[J]. 材料导报, 2019, 33(22): 3806-3810.
[11] 刘颖, 董丽虹, 王海斗. 激光熔覆成型的各向异性表征方法研究现状[J]. 材料导报, 2019, 33(21): 3541-3546.
[12] 徐子法, 焦俊科, 张正, 杨亚鹏, 张文武. 镍基高温合金激光修复工艺研究[J]. 材料导报, 2019, 33(19): 3196-3202.
[13] 聂豫晋, 戴建伟, 章晓波. Mg-3Gd-1Zn合金在模拟体液中的腐蚀与磨损协同作用[J]. 材料导报, 2019, 33(18): 3057-3061.
[14] 刘健健,朱诚意,李光强. 连铸结晶器铜板表面涂镀层应用研究进展[J]. 材料导报, 2019, 33(17): 2831-2838.
[15] 惠阳, 刘贵民, 闫涛, 杜林飞, 周雳. 载流摩擦磨损研究现状及展望[J]. 材料导报, 2019, 33(13): 2272-2280.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed