Please wait a minute...
材料导报  2019, Vol. 33 Issue (22): 3806-3810    https://doi.org/10.11896/cldb.18090204
  金属与金属基复合材料 |
激光熔覆铁基合金梯度涂层的组织性能及应用
范鹏飞1,孙文磊1,张冠1,2,王恪典1,3
1 新疆大学机械工程学院,乌鲁木齐 830047
2 新疆大学工程训练中心,乌鲁木齐 830047
3 西安交通大学机械工程学院,西安 710049
Microstructure, Properties and Applications of Laser Cladding Fe-based Alloy Gradient Coatings
FAN Pengfei1, SUN Wenlei1, ZHANG Guan1,2, WANG Kedian1,3
1 School of Mechanical Engineering, Xinjiang University, Urumqi 830047
2 Engineering Training Center of Xinjiang University, Urumqi 830047
3 School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049
下载:  全 文 ( PDF ) ( 3690KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 辊轴是高速线材轧机的重要部件,轴颈表面易磨损,为了延长辊轴的服役寿命,可以对磨损后的轴颈表面进行激光熔覆再制造。但是辊轴表面硬度较高,激光熔覆高硬度粉末易产生大量裂纹,而梯度熔覆则可在一定程度上解决此问题。前人关于梯度熔覆的研究多集中于理论及工艺阶段,鲜见应用于实际修复中。
   本工作利用4 kW光纤激光器在辊轴材料45#钢基体表面逐层熔覆了Fe1合金粉末和Fe5合金粉末,前者为过渡层,后者为强化层。利用渗透探伤检测了涂层表面的缺陷情况,运用OM、SEM和EDS等手段分析了熔覆层的显微组织及元素含量变化,采用XRD技术分别分析了各层的物相组成,利用显微硬度计测试了涂层的显微硬度。结果表明,梯度熔覆层表面形貌良好,无宏观裂纹,内部组织致密无缺陷。各层之间呈现良好的冶金结合,过渡层与强化层结合处的晶粒出现了细化,上层晶粒比下层晶粒细小。XRD分析表明,过渡层主要由奥氏体组成,强化层由奥氏体和马氏体两相组成。熔覆层硬度呈典型的梯度分布,强化层平均硬度为566.12HV0.2,达到了辊轴的硬度要求,过渡层平均硬度为385.98HV0.2,起到了很好的缓冲作用。最后,推导出了激光熔覆时机械臂与轴颈转速之间的关系模型,取得了较好的修复效果。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
范鹏飞
孙文磊
张冠
王恪典
关键词:  激光熔覆  铁基合金  梯度涂层  组织性能  物相组成  轧机辊轴    
Abstract: Roller shaft is an important part of high speed wire mill, and the shaft journal is easy to wear. In order to extend the service life of the roller shaft, the worn shaft journal can be remanufactured by laser cladding. However, the hardness of the roller shaft is high. And there will be large number of cracks when laser cladding high hardness powder. But gradient cladding can be used to solve this problem. Previous researches of gradient cladding mainly focus on theory and technology, but few works touch the practical repairing.
In this paper, Fe1 alloy powder and Fe5 alloy powder were coated on the surface of 45# steel by 4 kW fiber laser. The former was transition la-yer, and the latter was strengthened layer. The defects on the surface of the coating were detected by penetrant inspection. Furthermore, the microstructure and element content of the coating were analyzed by means of OM, SEM and EDS. And the phase composition of each layer was investigated by XRD. Meanwhile, the microhardness of the coating was measured by microhardness tester. The results showed that the sample presented good surface morphologies. No macroscopic cracks formed on its surface. And the coating was compact and free of defects. Moreover, metallurgical combinations were achieved between the layers. And the grains at the junction of the transition layer and the strengthened layer were refined. In general, the upper grains are smaller than the lower ones. XRD analysis showed that the transition layer was mainly composed of austenite and the reinforcement layer was made up of austenite and martensite. The hardness of the cladding layer presented a typical gradient distribution. And the average hardness of the strengthened layer was 566.12HV0.2, which met the hardness requirement of the mill roll shaft. Furthermore, the average hardness of the transition layer was 385.98HV0.2, which played a good role in buffering. The relationship between the speed of mechanical arm and the rotating speed of journal during laser cladding were deduced. Meanwhile, a good repair effect has been achieved.
Key words:  laser cladding    Fe-based alloy    gradient coating    microstructure and property    phase composition    mill roll shaft
               出版日期:  2019-11-25      发布日期:  2019-09-16
ZTFLH:  TG174.4  
基金资助: 新疆维吾尔自治区高技术研究发展项目(201513102)
作者简介:  范鹏飞,新疆大学2016级硕士研究生,主要从事激光熔覆再制造和材料表面改性方面的研究。
王恪典,西安交通大学博士,教授,主要从事激光精密加工、机电控制等方面的研究。
引用本文:    
范鹏飞,孙文磊,张冠,王恪典. 激光熔覆铁基合金梯度涂层的组织性能及应用[J]. 材料导报, 2019, 33(22): 3806-3810.
FAN Pengfei, SUN Wenlei, ZHANG Guan, WANG Kedian. Microstructure, Properties and Applications of Laser Cladding Fe-based Alloy Gradient Coatings. Materials Reports, 2019, 33(22): 3806-3810.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18090204  或          http://www.mater-rep.com/CN/Y2019/V33/I22/3806
[1] Wang X Y, Zhou S F, Dai X Q, et al. International Journal of Refractory Metals and Hard Materials, 2017, 64, 234.
[2] Bartkowski D, Mynarczak A, Piasecki A, et al. Optics & Laser Techno-logy, 2015, 68, 191.
[3] Ye S Y, Liu J Y, Yang W. Surface Technology, 2018, 47(3), 48 (in Chinese).叶四友, 刘建永, 杨伟. 表面技术, 2018,47(3), 48.
[4] Yang J X, Zhang J Q, Chang W Q, et al. Journal of Materials Enginee-ring, 2016, 44(6), 110(in Chinese).杨胶溪, 张健全, 常万庆, 等. 材料工程, 2016, 44(6), 110.
[5] Ren W B, Dong S Y, Xu B S, et al. Transactions of the China Welding Institution, 2018, 39(3), 11(in Chinese).任维彬, 董世运, 徐滨士, 等. 焊接学报, 2018, 39(3), 11.
[6] Li L Q, Yao C W, Huang J, et al. Chinese Journal of Lasers, 2017, 44(3), 136(in Chinese).李林起, 姚成武, 黄坚, 等. 中国激光, 2017, 44(3), 136.
[7] Bian H Y, Zhao X P, Qu S, et al. Chinese Journal of Lasers, 2016, 43(7), 98(in Chinese).卞宏友, 赵翔鹏, 曲伸, 等. 中国激光, 2016, 43(7), 98.
[8] Zhang D Q,Kao X J. Hot Working Technology, 2017, 46(2), 151(in Chinese).张德强, 考锡俊. 热加工工艺, 2017, 46(2), 151.
[9] Fang L Y, Yao Y S, Yan H, et al. Chinese Journal of Lasers, 2017, 44(8), 96(in Chinese).房刘杨, 姚延松, 闫华, 等. 中国激光, 2017, 44(8), 96.
[10] Bobbio L D, Otis R A, Borgonia J P, et al. Acta Materialia, 2017, 127, 133.
[11] Shah K, Hag I, Khan A, et al. Materials & Design, 2014, 54, 531.
[12] Dong S Y, Ma Y Z, Xu B S, et al. Materials Review, 2006, 20(6), 5(in Chinese).董世运, 马运哲, 徐滨士, 等. 材料导报, 2006, 20(6), 5.
[13] Liu H X, Dong T, Zhang X W, et al. Chinese Journal of Lasers, 2017, 44(8), 104(in Chinese).刘洪喜, 董涛, 张晓伟, 等. 中国激光, 2017, 44(8), 104.
[14] Gong Y B, Wang S L, Huang Y, et al. Chinese Journal of Rare Metals, 2017, 41(10), 1117(in Chinese).龚玉兵, 王善林, 黄勇, 等. 稀有金属, 2017, 41(10), 1117.
[15] Zhang S, Wu C L, Zhang C H, et al. Optics & Laser Technology, 2016, 84, 23.
[16] Liu H X, Leng N, Zhang X W, et al. Infrared and Laser Engineering, 2016, 45(1), 190(in Chinese).刘洪喜, 冷凝, 张晓伟, 等. 红外与激光工程, 2016, 45(1), 190.
[1] 胡厅, 万红, 华叶, 龚瑾瑜, 陈兴宇. 石墨表面TiC梯度涂层的制备及结构调制[J]. 材料导报, 2019, 33(z1): 74-77.
[2] 姜志鹏, 陈小明, 赵坚, 张磊, 伏利, 刘伟. 激光熔覆技术制备非晶涂层的研究进展与展望[J]. 材料导报, 2019, 33(z1): 191-194.
[3] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[4] 蒋波, 刘雅政, 周乐育, 张朝磊, 陈列, 王国存. 重型钎具用钢组织性能控制的研究现状[J]. 材料导报, 2019, 33(5): 854-861.
[5] 谢敏, 王梅丰, 戴晓琴, 雷剑波, 王春霞, 周圣丰. 综论偏晶合金的制备技术:外场下凝固、快速凝固及激光技术[J]. 材料导报, 2019, 33(3): 490-499.
[6] 刘颖, 董丽虹, 王海斗. 激光熔覆成型的各向异性表征方法研究现状[J]. 材料导报, 2019, 33(21): 3541-3546.
[7] 靳军, 孙俊生, 孙洪根, 卢庆亮, 许京伟, 杨云. 热作模具表面氮合金化堆焊金属的组织和性能[J]. 材料导报, 2019, 33(19): 3184-3188.
[8] 徐子法, 焦俊科, 张正, 杨亚鹏, 张文武. 镍基高温合金激光修复工艺研究[J]. 材料导报, 2019, 33(19): 3196-3202.
[9] 何浩然, 许俊强, 苗欣, 刘奇, 薄新维. 钼及钼合金表面硅化物涂层的制备、改性及抗氧化性能研究进展[J]. 材料导报, 2019, 33(19): 3227-3235.
[10] 易帅, 曾鲁举, 邓丽娜, 薛飞, 谢金莉, 刘艳改, 房明浩, 吴小文, 黄朝晖. 液相浸渗法制备CaAl12O19/(MgAl2O4-Al2O3)复相陶瓷[J]. 材料导报, 2019, 33(18): 3166-3169.
[11] 刘健健,朱诚意,李光强. 连铸结晶器铜板表面涂镀层应用研究进展[J]. 材料导报, 2019, 33(17): 2831-2838.
[12] 蒋智秋, 陈泉志, 董婉冰, 童庆, 李伟洲. Al对激光熔覆镍基合金涂层组织与性能的影响[J]. 材料导报, 2019, 33(12): 2035-2039.
[13] 郑丽娟, 付宇明, 宗磊, 齐童. 交变磁场对高硬熔覆层成型质量的影响[J]. 材料导报, 2018, 32(6): 905-908.
[14] 赵聪硕,邢志国,王海斗,李国禄,刘喆. 铁碳合金表面激光熔覆的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 418-426.
[15] 葛茂忠, 项建云, 范真. 激光熔覆修复对TC4钛合金疲劳裂纹扩展速率的影响[J]. 材料导报, 2018, 32(16): 2803-2808.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[4] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[7] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[10] TAN Cao, DUAN Hongjuan, WANG Junkai, ZHANG Haijun, LIU Jianghao. Preparation of ZrB2 Ultrafine Powders via Molten-salt-mediated Magnesiothermic Reduction[J]. Materials Reports, 2017, 31(8): 109 -112 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed