Please wait a minute...
材料导报  2019, Vol. 33 Issue (3): 490-499    https://doi.org/10.11896/cldb.201903016
  金属与金属基复合材料 |
综论偏晶合金的制备技术:外场下凝固、快速凝固及激光技术
谢敏1, 王梅丰2, 戴晓琴1, 雷剑波1, 王春霞2, 周圣丰1
1 天津工业大学激光技术研究所,天津 300387
2 南昌航空大学材料科学与工程学院,南昌 330063
Synthesis Techniques of Monotectic Alloys: Solidification in External Field, Rapid Solidification and Laser Technology
XIE Min1, WANG Meifeng2, DAI Xiaoqin1, LEI Jianbo1, WANG Chunxia2, ZHOU Shengfeng1
1 Institute of Laser Technology, Tianjin Polytechnic University, Tianjin 300387
2 School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063
下载:  全 文 ( PDF ) ( 3422KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 当偏晶合金液过冷至液相分离温度(Tsep)以下时,进入亚稳态难混溶区间,由单一液相分离成两个液相:L1(主体液相,质量分数大于50%)与L2(次生液相,收缩成液滴)。微观组织演化呈现三个阶段:(1)相分离自发进行阶段;(2)主体相合金熔体进入结晶过程;(3)残余的次生相合金熔体进入凝固阶段。尤其是当次生相凝固后弥散分布于主体相基体内时,偏晶合金具有高强、高导以及高耐磨性能,其在航空航天和汽车等工业领域具有重要的应用前景,长期以来受到了研究者的广泛关注。偏晶合金组织结构特征有两种,即第二相弥散型和核/壳结构型。然而,常规凝固条件下,制备的偏晶合金极易形成严重偏析或分层组织,导致制备大块匀质偏晶合金变得困难。为了深入研究偏晶合金液相分离行为,以及微结构特征对偏晶合金性能的影响,研究者提出了许多制备偏晶合金的方法。
早在1958年,液相分离现象就在Cu-Fe偏晶合金中被发现,当即引起学者们的广泛关注。近年来,为了制备组织均匀和性能优异的偏晶合金,开发了许多外场作用下的偏晶合金制备方法,旨在消除常规重力场下熔体对流造成的凝固组织偏析、位错、空洞等缺陷。例如,在微重力场条件下,对流作用减弱,可制备接近无偏析的凝固组织;在电磁场条件下,实现了对材料工艺过程的控制和材料组织与性能的改善;在直流磁场和电场交互作用下,熔体流动得到抑制,实现了电磁搅拌控制凝固;在交流磁场和电场交互作用下,实现了电磁搅拌和电磁悬浮,达到减小偏析和改善组织结构特征的目的;在超声场作用下,实现了材料无容器凝固。此外,快速凝固是一个典型的非平衡相变过程,可以消除合金的溶质偏析,获得常规凝固条件下无法获得的成分、相结构和显微组织,显著提高合金的强度、塑性、韧性、延展性和磁性等。
为深入了解各类偏晶合金的制备方法,本文主要从外场下凝固、快速凝固、激光技术角度综述了偏晶合金的各种凝固制备工艺和研究方法。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谢敏
王梅丰
戴晓琴
雷剑波
王春霞
周圣丰
关键词:  偏晶合金  液相分离  激光熔覆  激光-感应复合熔覆    
Abstract: When a homogeneous monotectic alloy melt is supercooled below a certain temperature (Tsep) into the immiscible metastable temperature gap, it will be separated into two liquid phase, namely L1 (major liquid phase and higher than 50wt%) and L2 (minor liquid phase, condensed into droplets). Generally, there are three stages in the microstructure evolution, including spontaneous phase separation, the crystallization process of major liquid phase and the solidification stage of residual secondary phase. Especially, when the spherical particles formed from minor liquid phase are dispersed into the major phase matrix, monotectic alloys are endowed with many unique properties, like high strength, high conductivity and excellent wear resistance, exhibiting great application potential in aerospace and automotive industry, and they have long been the focus of attention from researchers.At present, there are two kinds of structure characteristics of monotectic alloys, namely, the second phase dispersion or core/shell structure. However, under conventional solidification conditions, serious segregation or demixing structure are inevitable in monotectic alloys, which makes it difficult to prepare bulk homogeneous monotectic alloys. Aiming at digging out the liquid phase separation behavior of monotectic alloys and the effect of microstructure characteristics on the properties of monotectic alloys, a variety of methods have been put forward.
As early as 1958, liquid phase separation was discovered in Cu-Fe monotectic alloy, which immediately attracted great attention of scholars. In recent years, numerous preparation methods of monotectic alloys under external field have been developed to eliminating defect, like segregation, dislocation, voids and so on, for the sake of obtaining the monotectic alloys with uniform microstructure and excellent performance. For instance, under microgravity field, the monotectic alloys almost without segregation can be achieved, owing to the weakened convection. Under electromagnetic field, the processing parameters of materials can be controlled, the microstructure and properties can be also improved. Under the interaction of DC magnetic field and electric field, the melt flow can be restrained and the solidification can be controlled electromagnetic stirring. Under the interaction of AC magnetic field and electric field, the electromagnetic stirring and the electromagnetic suspension can be realized, which are beneficial for reducing separation and improving microstructure. Under supersonic field, containerless solidification can be conducted. Furthermore, as a typical process of non-equilibrium phase transformation, rapid solidification contribute to eliminate the solute segregation of the alloy and obtain the unique composition, microstructure, phase constituents, that cannot be obtained under conventional solidification process, consequently, improve the strength, plasticity, toughness, ductility and magnetism significantly.
Aiming at acquiring further understanding of the preparation methods of monotectic alloys, the solidification processes and investigation methods of monotectic alloys are reviewed in this article, from the standpoint of solidification in external field, rapid solidification and laser technology.
Key words:  monotectic alloy    liquid-phase separation    laser cladding    laser-induction hybrid cladding
               出版日期:  2019-02-10      发布日期:  2019-02-13
ZTFLH:  TN249  
基金资助: 国家自然科学基金(51471084;61475117);江西省杰出青年基金(20162BCB23039);天津市自然科学基金京津冀合作专项(17JCZDJC40500)
作者简介:  谢敏,2016年6月毕业于安徽工业大学材料成型与控制工程专业,取得工学学士学位。现为天津工业大学材料科学与工程学院博士研究生,在周圣丰教授的指导下主要从事激光熔化沉积新材料方面的研究。周圣丰,天津工业大学激光技术研究所,教授、博士研究生导师,2008年12月在华中科技大学武汉光电国家实验室物理电子学专业取得博士学位。zhousf1228@163.com
引用本文:    
谢敏, 王梅丰, 戴晓琴, 雷剑波, 王春霞, 周圣丰. 综论偏晶合金的制备技术:外场下凝固、快速凝固及激光技术[J]. 材料导报, 2019, 33(3): 490-499.
XIE Min, WANG Meifeng, DAI Xiaoqin, LEI Jianbo, WANG Chunxia, ZHOU Shengfeng. Synthesis Techniques of Monotectic Alloys: Solidification in External Field, Rapid Solidification and Laser Technology. Materials Reports, 2019, 33(3): 490-499.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201903016  或          http://www.mater-rep.com/CN/Y2019/V33/I3/490
1 Delfino G, Squarcini A. Physical Review Letters,2014,113(6),066101.
2 Wu Y H, Wang W L, Wei B B. Acta Physica Sinica,2016,65(10),106402(in Chinese).
吴宇昊,王伟丽,魏炳波.物理学报,2016,65(10),106402.
3 Zhang L, Wang E G, Zuo X W, et al. Materials Review A: Review Papers,2010,24(4),85(in Chinese).
张林,王恩刚,左小伟,等.材料导报:综述篇,2010,24(4),85.
4 Zhai W, Wang N, Wei B B. Acta Physica Sinica,2007,56(4),2353(in Chinese).
翟薇,王楠,魏炳波.物理学报,2007,56(4),2353.
5 Zhao J Z, Jiang H X, Sun Q, et al. Materials China,2017,36(4),252(in Chinese).
赵九洲,江鸿翔,孙倩,等.中国材料进展,2017,36(4),252.
6 Kang Z Q, Wang E G, Zhang L, et al. Materials Review A: Review Papers,2011,25(2),13(in Chinese).
康智强,王恩刚,张林,等.材料导报:综述篇,2011,25(2),13.
7 He J, Zhao J Z. Journal of University of Science and Technology Beijing,2008,30(12),1348.
8 Yang Y, Xu J F, Zhai Q Y. Chinese Journal of Nonferrous Metals,2007,17(9),1521(in Chinese).
杨扬,徐锦锋,翟秋亚.中国有色金属学报,2007,17(9),1521.
9 Liu S Q, Hao W X, Yang G C. Foundry,2006,55(5),444(in Chinese).
刘申全,郝维新,杨根仓.铸造,2006,55(5),444.
10 Zhou S F, Dai X Q, Xiong Z, et al. Journal of Materials Research,2014,29(7),865.
11 Liu X, Zhu Y, Yu Y, et al. Journal of Alloys and Compounds,2011,509(19),5740.
12 Zhai W, Wei B B. Journal of Chemical Thermodynamics,2015,86,57.
13 Sun Q, Jiang H X, Zhao J Z, et al. Acta Materialia,2017,129,321.
14 Chen S, Zhao J Z, Jiang H X, et al. Acta Metallurgica Sinica,2015,28(3),316.
15 Zuo X, Zhao C, Zhang L, et al. Materials,2016,569(9),1.
16 Zhao J Z, Ahmed T, Jiang H X, et al. Acta Metallurgica Sinica,2017,30(1),1.
17 Zuo X W, Wang E G, Han H, et al. Acta Metallurgica Sinica,2010,492(1),621(in Chinese).
左小伟,王恩刚,韩欢,等.金属学报,2010,492(1),621.
18 Xian A P, Zhang X M, Li Z Y, et al. Acta Metallurgica Sinica,1996,32(2),113(in Chinese).
冼爱平,张修睦,李忠玉,等.金属学报,1996,32(2),113.
19 Adachi M, Okamoto A, Iwai H, et al. U.S. patent, US 5039476 A,1991.
20 Mohan S, Agarwala V, Ray S. Materials Science and Engineering A,1991,144(1-2),215.
21 Okress E C, Wroughton D M, Comenetz G, et al. Journal of Applied Physics,1952,23(5),545.
22 Pu J. Materials Review,2002,16(7),24(in Chinese).
蒲健.材料导报,2002,16(7),24.
23 Xu J F. Acta Physica Sinica,2004,53(6),1909(in Chinese).
徐锦峰,魏炳波.物理学报,2004,53(6),1909.
24 He J, Zhao J Z, Li H, et al. Metallurgical and Materials Transactions A,2008,39(5),1174.
25 Ding Y X, Zhou L Z. Metal Hotworking Technology,2007,36(6),69(in Chinese).
丁阳喜,周立志.热加工工艺,2007,36(6),69.
26 Al-Aqeeli N, Hussein M A, Suryanarayana C. Advanced Powder Techno-logy,2015,26(2),385.
27 Liu E, Chen T, Hao Y, et al. Special Casting and Nonferrous Alloys,2010,30(3),275.
28 Zhao J Z, Li H L, He J, et al. Acta Metallurgica Sinica,2008,44(6),693(in Chinese).
赵九洲,李海丽,何杰,等.金属学报,2008,44(6),693.
29 Kobayashi A, Nagayama K. Journal of the Japan Institute of Metals,2017,81(5),251.
30 Sheng L I, Liu F, Yang W. Transactions of Nonferrous Metals Society of China,2017,27(1),227.
31 Wang W L, Wu Y H, Li L H, et al. Physical Review E,2016,93(3),032603.
32 Bochicchio D, Ferrando R, Panizon E, et al. Journal of Physics: Condensed Matter: An Institute of Physics Journal,2016,28(6),064005.
33 Fang F, Shu X L, Deng H Q, et al. Materials Science and Engineering A,2003,355(1),357.
34 Xu J F, Fan Y F, Chen W, et al. Acta Physica Sinica,2009,56(7),3996(in Chinese).
徐锦峰,范玉芳,陈娓,等.物理学报,2009,56(7),3996.
35 Lu W Q, Zhang S G, Li J G, et al. Acta Metallurgica Sinica,2016,29(9),1.
36 Zhang L, Man T, Huang M, et al. Materials,2017,1005(10),1.
37 Groh H C D, Probst H B. In: Aerospace Sciences Meeting. Kissimmee,2015,pp.476.
38 Cao C, Chen L, Xu J, et al. Materials Letters,2016,174,213.
39 Wang Z, Sun Z, Wang X, et al. Materials and Design,2017,114,111.
40 Aslam U, Linic S. Chemistry of Materials,2016,28(22),8289.
41 Kang Z Q, Zhang Y B, Yang X, et al. Materials Science Forum,2017,896,209.
42 Beach J A, Wang M, Bellon P, et al. Acta Materialia,2017,140,217.
43 Shubin Y, Plyusnin P, Sharafutdinov M, et al. Nanotechnology,2017,28(20),205302.
44 Huang B, Kobayashi H, Yamamoto T, et al. Journal of the American Chemical Society,2017,139(13),4643.
45 Santhi K, Dhanapal K, Narayanan V, et al. Journal of Magnetism and Magnetic Materials,2017,433,202.
46 Kim Y, Han G K, Kang Y B, et al. Metallurgical and Materials Transactions A,2017,48(6),3130.
47 Chu K, Zhu W, Zhao C, et al. Materials Letters,2017,207,141.
48 Wang W L, Li Z Q, Wei B B. Acta Materialia,2011,59(14),5482.
49 Wu Y H, Wang W L, Xia Z C, et al. Computational Materials Science,2015,103,179.
50 Wu Y H, Wang W L, Yan N, et al. Physical Review E,2017,95(5-1),052111.
51 Zhang L, Wang E G, Zuo X W, et al. Rare Metal Materials and Engineering,2015,44(2),344.
52 Zhao L, Jiang H X, HMAD, et al. Acta Metallurgica Sinica,2015,51(7),883(in Chinese).
赵雷,江鸿翔,HMAD,等.金属学报,2015,51(7),883.
53 Zhao L, Zhao J Z. Metallurgical and Materials Transactions A,2012,43(13),5019.
54 Manasijević D, Minić D, Premović M, et al. Journal of Alloys and Compounds,2016,664,199.
55 Wang Z, Sun Z, Jiang S, et al. Journal of Molecular Liquids,2017,237,10.
56 Li M, Jia P, Sun X, et al. Applied Physics A,2016,122(4),1.
57 Mondal B N, Chabri S, Sardar G, et al. Journal of Magnetism and Magnetic Materials,2016,412,138.
58 Zhai W, Wang B J, Liu H M, et al. Scientific Reports,2016,6(36718),1.
59 Jiang H X, He J, Zhao J Z. Scientific Reports,2015,5(12680),1.
60 Nagase T, Takemura M, Matsumuro M, et al. Materials and Design,2016,117,338.
61 Ziewiec K, Wojciechowska M, Garzeł G, et al. Intermetallics,2016,69,47.
62 Wang Z Y, He J, Yang B J, et al. Materials Science and Technology,2017,33(11),1.
63 Ziewiec K, Wojciechowska M, Ferenc J, et al. Journal of Alloys and Compounds,2017,710,685.
64 Nagase T, Suzuki M, Tanaka T. Intermetallics,2015,61(5),56.
65 Dai X Q, Zhou S F, Wang M F, et al. Journal of Alloys and Compounds,2017,722,173.
66 Shi R P, Wang C P, Wheeler D, et al. Acta Materialia,2013,61(4),1229.
67 Wang N, Zhang L, Peng Y L, et al. Journal of Alloys and Compounds,2016,663,379.
68 Zuo X W, An B L, Huang D Y, et al. Acta Physica Sinica,2016,65(13),246(in Chinese).
左小伟,安佰灵,黄德洋,等.物理学报,2016,65(13),246.
69 Liu J, Hao W X, Da D A. Foundry,2004,53(11),875(in Chinese).
刘洁,郝维新,达道安.铸造,2004,53(11),875.
70 Da D A, Jiang W S, Wang Y M. Chinese Space Science and Technology,1988,8(6),20(in Chinese).
达道安,姜万顺,王毓敏.中国空间科学技术,1988,8(6),20.
71 Qi N M, Zhang W H, Gao J Z, et al. Aerospace Control,2011,29(3),95(in Chinese).
齐乃明,张文辉,高九州,等.航天控制,2011,29(3),95.
72 Feng S B. Solidification behavior of alloys under microgravity and normal gravity conditions in long drop tube. Ph.D. Thesis, University of Chinese Academy of Sciences, China,2012(in Chinese).
封少波.合金在长落管微重力与重力环境下的凝固行为研究.博士学位论文,中国科学院大学,2012.
73 Luo S B, Wang W L, Xia Z C, et al. Applied Physics A,2015,119(3),1003.
74 Li Z Q, Wang W L, Zhai W, et al. Acta Physica Sinica,2011,60(10),705(in Chinese).
李志强,王伟丽,翟薇,等.物理学报,2011,60(10),705.
75 Rathz T J, Robinson M B, Li D, et al. Journal of Materials Science,2001,36(5),1183.
76 Egry I, Herlach D, Ratke L, et al. In: Proceedings of the 1st Internatio-nal Symposium on Microgravity Research and Applications in Physical Science and Biotechnology. Sorrento,2001,pp.669.
77 Hong Z Y. Containerless solidification of Bi-Ga and Bi-In alloys under acoustic levitation conditions. Master’s thesis, Northwestern Polytechnical University, China,2004(in Chinese).
洪振宇.声悬浮条件下Bi-Ga和Bi-In合金的液固相变研究.硕士学位论文,西北工业大学,2004.
78 Xie W J, Wei B B. Physics,2002,31(9),551(in Chinese).
解文军,魏炳波.物理,2002,31(9),551.
79 Zhang B, Lu X Y, Dai F P, et al. Chinese Journal of Nonferrous Metals,2011,21(11),2744(in Chinese).
张波,鲁晓宇,代富平,等.中国有色金属学报,2011,21(11),2744.
80 Zheng H X, Ma W Z, Ji C C, et al. Chinese Journal of Nonferrous Metals,2003,13(2),339(in Chinese).
郑红星,马伟增,季诚昌,等.中国有色金属学报,2003,13(2),339.
81 Zang D Y, Wang H P, Wei B B. Acta Physica Sinica,2007,56(8),4804(in Chinese).
臧渡洋,王海鹏,魏炳波.物理学报,2007,56(8),4804.
82 Liu L Q, Zhang Z M, Xu C J, et al. Transactions of Materials and Heat Treatment,2008,29(1),102(in Chinese).
刘丽琴,张忠明,徐春杰,等.材料热处理学报,2008,29(1),102.
83 Dong X Q, Zhang K, Liu F. Foundry Technology,2012,33(2),8(in Chinese).
董晓晴,张柯,刘峰.铸造技术,2012,33(2),8.
84 Hao W X, Yang G C, Xie H, et al. Foundry Technology,2004,25(4),255(in Chinese).
郝维新,杨根仓,谢辉,等.铸造技术,2004,25(4),255.
85 Yin H Y, Lu X Y. Acta Physica Sinica,2008,57(7),4341(in Chinese).
殷涵玉,鲁晓宇.物理学报,2008,57(7),4341.
86 Xu J F, Fan Y F, Chen W, et al. Acta Physica Sinica,2009,58(1),644(in Chinese).
徐锦锋,范于芳,陈娓,等.物理学报,2009,58(1),644.
87 Liu Y, Guo J J, Jia J, et al. Acta Physica Sinica,2000,36(12),1233(in Chinese).
刘源,郭景杰,贾均,等.物理学报,2000,36(12),1233.
88 Wang H X, Xu J F, Tian Y. Foundry Technology,2011,32(1),78(in Chinese).
王红霞,徐锦锋,田媛.铸造技术,2011,32(1),78.
89 Kim W T, Zhang D L, Cantor B. Materials Science and Engineering A,1991,134(91),1133.
90 Huang Y J, Zeng X Y, Hu Q W, et al. Applied Laser,2007,27(6),465(in Chinese).
黄永俊,曾晓雁,胡乾午,等.应用激光,2007,27(6),465.
91 Kang N, Coddet P, Wang J, et al. Composite Structures,2017,172,251.
92 Zhou S F, Zeng X Y, Hu Q W, et al. Applied Surface Science,2008,255(5),1646.
93 Song W L, Echigoya J, Zhu B D, et al. Surface and Coatings Technology,2000,126(1),76.
94 Luo X, Li J, Li G J. Journal of Alloys and Compounds,2015,626,102.
95 Fang Y X, Qi L J, Wang K, et al. Laser Technology,2017,41(1),40(in Chinese).
房永祥,齐丽君,王珂,等.激光技术,2017,41(1),40.
96 Afonso C N, Gonzalo J. Nuclear Instruments and Methods in Physics Research,1996,116(s1-4),404.
97 Cui Z Q, Qin Y C. Metallography and Heat Treatment, China Machine Press,1989(in Chinese).
崔忠圻,覃耀春.金属学与热处理,机械工业出版社,1989.
98 Zhang D D. Study on the generating mechanism and control methods of high hardness laser cladding coating cracks. Master’s thesis, Changchun University of Science and Technology, China,2014(in Chinese).
张栋栋.高硬度激光熔覆层裂纹的产生机理及控制方法研究.硕士论文,长春理工大学,2014.
99 Zhou S F, Huang Y J, Zeng X Y, et al. Chinese Journal of Lasers,2008,256(14),4708.
100 Zhou S F, Zeng X Y. Hot Working Technology,2009,38(22),113.
周圣丰,曾晓雁.热加工工艺,2009,38(22),113.
101 Zhou S F, Zeng X Y, Hu Q W, et al. Laser Technology,2009,33(2),124.
周圣丰,曾晓雁,胡乾午,等.激光技术,2009,33(2),124.
102 Bruckner F, Lepski D, Beyer E. In: XVI International Symposium on Gas Flow, Chemical Lasers, and High-Power Lasers. Austria, 2006, pp. 63461D.
103 Zhou S F, Wu C, Zhang T Y, et al. Scripta Materialia,2014,76(2),25.
104 Chen S, Zhao J Z. Acta Metallurgica Sinica,2014,50(5),561(in Chinese).
陈书,赵九洲.金属学报,2014,50(5),561.
105 Sun Q, Jiang H X, Zhao J Z. Acta Metallurgica Sinica,2016,52(4),497(in Chinese).
孙倩,江鸿翔,赵九洲.金属学报,2016,52(4),497.
106 Zhang H W, Xian A P. Acta Metallurgica Sinica,2000,36(4),347(in Chinese).
张宏闻,冼爱平.金属学报,2000,36(4),347.
107 Gao F, Jiang C B, Liu J H, et al. Acta Metallurgica Sinica,2007,43(7),683.
高芳,蒋成保,刘敬华,等.金属学报,2007,43(7),683.
108 Guo S M, Xun Y K, Sun Y. Yunnan Metallurgy,2006,35(5),48(in Chinese).
郭诗玫,荀艳坤,孙勇.云南冶金,2006,35(5),48.
109 Xu A L, Liu S P, Zhou S Q, et al. Journal of Chongqing University(Science Edition),2005,28(11),84(in Chinese).
徐安莲,刘守平,周上祺,等.重庆大学学报:自然科学版,2005,28(11),84.
110 Xu Y F, Zhu M. Journal of Materials Science and Engineering,1999,17(2),71(in Chinese).
徐永富,朱敏.材料科学与工程学报,1999,17(2),71.
[1] 姜志鹏, 陈小明, 赵坚, 张磊, 伏利, 刘伟. 激光熔覆技术制备非晶涂层的研究进展与展望[J]. 材料导报, 2019, 33(z1): 191-194.
[2] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[3] 刘健健,朱诚意,李光强. 连铸结晶器铜板表面涂镀层应用研究进展[J]. 材料导报, 2019, 33(17): 2831-2838.
[4] 蒋智秋, 陈泉志, 董婉冰, 童庆, 李伟洲. Al对激光熔覆镍基合金涂层组织与性能的影响[J]. 材料导报, 2019, 33(12): 2035-2039.
[5] 郑丽娟, 付宇明, 宗磊, 齐童. 交变磁场对高硬熔覆层成型质量的影响[J]. 材料导报, 2018, 32(6): 905-908.
[6] 赵聪硕,邢志国,王海斗,李国禄,刘喆. 铁碳合金表面激光熔覆的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 418-426.
[7] 葛茂忠, 项建云, 范真. 激光熔覆修复对TC4钛合金疲劳裂纹扩展速率的影响[J]. 材料导报, 2018, 32(16): 2803-2808.
[8] 张天刚, 孙荣禄, 张雪洋, 刘亚楠. Ti811表面激光熔覆原位合成TiC-TiB2复合Ti基涂层的微观组织分析[J]. 《材料导报》期刊社, 2018, 32(13): 2208-2213.
[9] 张天刚,孙荣禄,安通达,张宏伟. Ti811表面单道与多道TC4激光熔覆层微观组织对比[J]. 《材料导报》期刊社, 2018, 32(12): 1983-1987.
[10] 赵钦,马国政,王海斗,李国禄,陈书赢,周羊羊. 高熵合金涂层制备及其应用的研究进展*[J]. 《材料导报》期刊社, 2017, 31(7): 65-71.
[11] 孙有政, 刘帅, 李进宝, 刘常升. 铁含量对激光熔覆层微结构及性能的影响*[J]. 《材料导报》期刊社, 2017, 31(4): 75-78.
[12] 张天刚, 孙荣禄. TC4表面单道与多道搭接激光熔覆自润滑涂层微观组织对比研究*[J]. 《材料导报》期刊社, 2017, 31(4): 47-51.
[13] 杨 丹,宁玉恒,赵宇光,朱国斌,徐晓峰. 工艺参数对304不锈钢表面激光熔覆Ni基合金涂层的组织、耐磨性及耐腐蚀性的影响[J]. 《材料导报》期刊社, 2017, 31(24): 133-140.
[14] 肖轶,顾剑锋,张俊喜,杨有利. 纳米CeO2对激光熔覆Fe/Cr3C2复合涂层组织与磨损性能的影响*[J]. 材料导报编辑部, 2017, 31(22): 65-69.
[15] 龚玉兵, 王善林, 张子阳, 李宏祥, 陈玉华. 基于工业合金激光熔覆制备Fe基非晶涂层*[J]. 《材料导报》期刊社, 2017, 31(16): 98-102.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed