Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (7): 65-71    https://doi.org/10.11896/j.issn.1005-023X.2017.07.010
  材料综述 |
高熵合金涂层制备及其应用的研究进展*
赵钦1,2,马国政2,王海斗2,李国禄1,陈书赢2,周羊羊1
1 河北工业大学材料科学与工程学院,天津 300130;
2 装甲兵工程学院装备再制造技术国防科技重点实验室,北京 100072
Review on Preparation and Application of High-entropy Alloy Coatings
ZHAO Qin1,2, MA Guozheng2, WANG Haidou2, LI Guolu1,CHEN Shuying2, ZHOU Yangyang1
1 School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130;
2 National Key Lab for Remanufacturing, Academy of Armored Forces Engineering, Beijing 100072
下载:  全 文 ( PDF ) ( 2072KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高熵合金涂层又称多主元合金涂层,是一种新型合金涂层。受高熵效应的影响,涂层的组织结构主要由单一的BCC、FCC或者HCP固溶体相构成,且易于形成非晶、纳米晶和纳米复合物,呈现出优异的综合力学性能、抗高温氧化性能、耐辐射性能和生物兼容性能等,具有重要的研究价值和应用前景。分别从涂层的主元数量和位形熵值两方面对高熵合金涂层的概念进行了阐述,比较分析了热喷涂、激光熔覆以及物理气相沉积等几类常用的高熵合金涂层制备工艺的优点和不足,总结了高熵合金涂层的工业应用现状,最后指出了高熵合金涂层在目前的研究中存在的问题并展望了其未来的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵钦
马国政
王海斗
李国禄
陈书赢
周羊羊
关键词:  高熵合金涂层  多主元合金涂层  激光熔覆  热喷涂  物理气相沉积    
Abstract: High-entropy alloy coatings(HEACs), also known as multi-principal-element alloy coatings, are new kinds of alloy coatings which primarily composed by single BCC, FCC or HCP solid solution, and amorphous, nanocrystalline and nanocomposite can be easily obtained under the influence of high entropy effect. HEACs have excellent comprehensive mechanical properties, high temperature oxidation resistance, radiation resistance, biocompatibility and so forth, therefore they have high research value and great application prospects. The conception of HEACs are elaborated from two aspects, namely, the number of principal element and the value of configuration entropy of coatings. The advantage and disadvantage of thermal spray, laser cladding and physical vapor deposition process which are commonly used methods to prepare HEACs are analyzed and compared. The current application of HEACs in industry is introduced. Finally, the existing problems of the current research about HEACs are pointed out and the future development direction of HEACs is also proposed.
Key words:  high-entropy alloy coatings    multi-principal-element alloy coatings    laser cladding    thermal spray    physical vapor deposition
出版日期:  2017-04-10      发布日期:  2018-05-08
ZTFLH:  TG174.44  
基金资助: *国家自然科学基金(51535011;51675158;51675531)
作者简介:  赵钦:男,1993年生,硕士研究生,主要从事表面工程研究E-mail:zhaoqin4614@163.com李国禄:男,1966年生,博士,教授,博士研究生导师,主要从事表面工程和摩擦学研究E-mail:liguolu@hebut.edu.cn王海斗:男,1969年生,博士,研究员,主要从事表面工程和摩擦学研究E-mail:wanghaidou@aliyun.com
引用本文:    
赵钦,马国政,王海斗,李国禄,陈书赢,周羊羊. 高熵合金涂层制备及其应用的研究进展*[J]. 《材料导报》期刊社, 2017, 31(7): 65-71.
ZHAO Qin, MA Guozheng, WANG Haidou, LI Guolu,CHEN Shuying, ZHOU Yangyang. Review on Preparation and Application of High-entropy Alloy Coatings. Materials Reports, 2017, 31(7): 65-71.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.07.010  或          https://www.mater-rep.com/CN/Y2017/V31/I7/65
1 Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts [J]. Acta Mater,2017,122(1):448.
2 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv Eng Mater,2004,6(5):299.
3 Ranganathan S. Alloyed pleasures: Multimetallic cocktails [J]. Currentence,2003,85(10):1404.
4 Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater Sci Eng A, 2004,375-377(1):213.
5 Zhang Y, Zuo T T, Cheng Y, et al. High-entropy alloys with high saturation magnetization, electrical resistivity and malleability [J]. Scientific Reports,2013,3(6125):1335.
6 Santodonato L J, Zhang Y, Feygenson M, et al. Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy [J]. Nat Commun,2015,6:5964.
7 Lim X. Mixed-up metals make for stronger, tougher, stretchier alloys [J]. Nature,2016,533(7603):306.
8 Gludovatz B, et al. A fracture-resistant high-entropy alloy for cryogenic applications [J]. Science, 2014,345(6201):1153.
9 Butler T M, Alfano J P, Martens R L, et al. High-temperature oxidation behavior of Al-Co-Cr-Ni-(Fe or Si) multicomponent high-entropy alloys [J]. J Met,2014,67(1):1.
10 Senkov O N, Miller J D, Miracle D B, et al. Accelerated exploration of multi-principal element alloys with solid solution phases [J]. Nat Commun,2015,6:6529.
11 Zhao Y J, Qiao J W, et al. A hexagonal close-packed high-entropy alloy: The effect of entropy [J]. Mater Des,2016, 96:10.
12 Dong Y, Gao X, et al. A multi-component AlCrFe2Ni2 alloy with excellent mechanical properties [J]. Mater Lett, 2016,169:62.
13 Lu Y, et al. A promising new class of high-temperature alloys: Eutectic high-entropy alloys [J]. Scientific Reports,2014,4:6200.
14 Sui Yanwei, Chen Xiao, Qi Jiqiu, et al. Research progress of high-entropy alloys with multi-principal elements and its prospective application [J]. J Funct Mater,2016,47(5):50(in Chinese).
隋艳伟, 陈霄, 戚继球, 等. 多主元高熵合金的研究现状与应用展望[J]. 功能材料, 2016, 47(5):50.
15 Shi Wankai, Li Ning, et al. Research on tribological properties of sulfide layer produced by ion sulphurization [J]. J Chongqing University of Technology: Nat Sci,2015,29(9):48(in Chinese).
石万凯, 李宁, 等. 低温离子渗硫FeS涂层的摩擦学性能研究[J]. 重庆理工大学学报:自然科学版,2015, 29(9):48.
16 Huang P K, Yeh J W, Shun T T, et al. Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating [J]. Adv Eng Mater,2004,6(1-2):74.
17 Jiang L, et al. Microstructure evolution and wear behavior of the laser cladded CoFeNi2V0.5Nb0.75 and CoFeNi2V0.5Nb high-entropy alloy coatings [J]. J Thermal Spray Technol,2016,25(4):806.
18 King D J M, Middleburgh S C, Mcgregor A G, et al. Predicting the formation and stability of single phase high-entropy alloys [J]. Acta Mater,2016,104:172.
19 Yeh J W, Lin S J, Tsai M H, et al. High-entropy alloys [M]. Berlin:Springer,2016:8.
20 Haupt P. Thermodynamics of solids [J]. Am J Phys,1962,30(10):778.
21 Gaskell D R. Introduction to the thermodynamics of materials [J]. J Am Ceram Soc,2008,56(7):355.
22 Takeuchi A, Inoue A. Calculations of mixing enthalpy and mismatch entropy for ternary amorphous alloys [J]. Mater Trans, 2000,41(11):1372.
23 Murty B S, Yeh J W, Ranganathan S. High entropy alloys [M]. Amsterdam:Elsevier,2014:15.
24 Fultz B. Vibrational thermodynamics of materials [J]. Progress Mater Sci,2010,55(4):247.
25 Yeh J W. Alloy design strategies and future trends in high-entropy alloys [J]. J Miner Met Mater Soc,2013,65(12):1759.
26 Ma Zhuang, Wang Ni, et al. Progress in high-entropy alloy compo-site materials [J].Mater Rev: Rev,2015, 29(9):140(in Chinese).
马壮, 王倪, 等. 高熵合金基复合材料研究进展[J]. 材料导报:综述篇,2015,29(9):140.
27 Wang L M, Chen C C, et al. The microstructure and strengthening mechanism of thermal spray coating NixCo0.6Fe0.2CrySizAlTi0.2 high-entropy alloys [J]. Mater Chem Phys,2011,126(3):880.
28 Ang A S M, Berndt C C, Sesso M L, et al. Plasma-sprayed high entropy alloys: Microstructure and properties of AlCoCrFeNi and MnCoCrFeNi [J]. Metall Mater Trans A,2015,46(2):791.
29 Ang A S M. Comparison of plasma sprayed high entropy alloys with conventional bond coat materials [C]//International Thermal Spray Conference and Exposition (ITSC),2015.
30 Zhang Mina, Zhou Xianglin, Yu Xiangnan, et al. Synthesis and characterization of refractory TiZrNbWMo high-entropy alloy coa-ting by laser cladding [J]. Surf Coat Technol,2017,311(15):321.
31 Ma Mingxing, Liu Yuanxun, Gu Yu, et al. Synthesis of AlxCoCrNiMo high entropy alloy coatings by laser cladding [J]. Appl Laser,2010,30(6):433(in Chinese).
马明星, 柳沅汛, 谷雨, 等 激光制备AlxCoCrNiMo高熵合金涂层的研究[J]. 应用激光,2010,30(6):433.
32 Huang C, Zhang Y, Rui V, et al. Dry sliding wear behavior of laser clad TiVCrAlSi high entropy alloy coatings on Ti-6Al-4V substrate [J]. Mater Des,2012,41:338.
33 Liu Shida, Peng Cunyuan, Ma Mingxing, et al. Effect of Mn contents on the phase transition of the high entropy alloy prepared by laser cladding [J]. Mater Sci Forum,2016,849:64.
34 Dong Y, Zhou K, Lu Y, et al. Effect of vanadium addition on the microstructure and properties of AlCoCrFeNi high entropy alloy [J]. Mater Des,2014,57(5):67.
35 Huang Zufeng, Zhang Chong, Tang Qunhua, et al. Effects of WC particles on the microstructure and hardness of FeCoCrNiCu high-entropy alloy coating prepared by laser cladding [J]. China Surf Eng,2013,26(1):13(in Chinese).
黄祖凤, 张冲, 唐群华, 等. WC颗粒对激光熔覆FeCoCrNiCu高熵合金涂层组织与硬度的影响[J]. 中国表面工程,2013, 26(1):13.
36 Ocelík V, Janssen N, Smith S N, et al. Additive manufacturing of high-entropy alloys by laser processing [J]. J Miner Met Mater Soc,2016,68(7):1810.
37 石玉龙,闫凤英.薄膜技术与薄膜材料[M]. 北京:化学工业出版社,2015.
38 Cai Minghong. Microstructure and electrical property variation of high-entropy alloy films [D]. Hsinchu: National Tsinghua University,2002(in Chinese).
蔡铭洪. 多元高熵合金薄膜微结构及电性演变之研究[D]. 新竹:新竹清华大学,2002.
39 Alexander Pogrebnjak, et al. Irradiation resistance, microstructure and mechanical properties of nanostructured (TiZrHfVNbTa)N coatings [J]. J Alloys Compd,2016,DOI:10.1016/j.ja∥com.21016,04,064.
40 Pogrebnjak A D, Yakushchenko I V, Bagdasaryan A A, et al. Microstructure, physical and chemical properties of nanostructured (Ti-Hf-Zr-V-Nb)N coatings under different deposition conditions [J]. Mater Chem Phys,2014,147(3):1079.
41 Braic V, Vladescu A, Balaceanu M, et al. Nanostructured multi-element (TiZrNbHfTa)N and (TiZrNbHfTa)C hard coatings [J]. Surf Coat Technol,2012,211(42):117.
42 Braic V, Balaceanu M, Braic M, et al. Characterization of multi-principal-element (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings for biomedical applications [J]. J Mechan Behavior Biomed Mater,2012,10(10):197.
43 Braic V, Parau A C, et al. Effects of substrate temperature and carbon content on the structure and properties of (CrCu-NbTiY)C multicomponent coatings[J]. Surf Coat Technol,2014,258:996.
44 Shen W J, Tsai M H, Yeh J W. Machining performance of sputter-deposited(Al0.34Cr0.22Nb0.11Si0.11Ti0.22)50N50 high-entropy nitride coatings [J]. Coatings,2015,5(3):312.
45 Shen W J, Tsai M H, Chang Y S, et al. Effects of substrate bias on the structure and mechanical properties of (Al1.5CrNb0.5Si0.5Ti)N x coatings [J]. Thin Solid Films,2012,520(19):6183.
46 Shen W J, Tsai M H, Tsai K Y, et al. Superior oxidation resis-tance of (Al0.34Cr0.22Nb0.11Si0.11Ti0.22)50N50 high-eentropy nitride [J]. J Electrochem Soc,2013,160(11):C531.
47 Lv C F, et al. Structure and mechanical pro-perties of a-C/(AlCrWTaTiNb)CxNy composite films [J]. Surf Eng,2016,32(7):1.
48 Tsai D C, Deng M J, Chang Z C, et al. Oxidation resistance and characterization of (AlCrMoTaTi)SixN coating deposited via magnetron sputtering [J]. J Alloys Compd,2015,647:179.
49 Cheng K H, Tsai C W, et al. Effects of silicon content on the structure and mechanical properties of (AlCrTaTiZr)SixN coatings by reactive RF magnetron sputtering [J]. J Phys D,2011,44(20):7.
50 Cheng C Y, Yeh J W. High-entropy BNbTaTiZr thin film with excellent thermal stability of amorphous structure and its electrical properties [J]. Mater Lett,2016,185:456.
51 Yue T M, Xie H, Lin X, et al. Microstructure of laser re-melted AlCoCrCuFeNi high entropy alloy coatings produced by plasma spraying [J]. Entropy,2013,15(7):2833.
52 Shang C, Axinte E, Sun J, et al. CoCrFeNi(W1-xMox) high-entropy alloy coatings with excellent mechanical properties and corrosion resistance prepared by mechanical alloying and hot pressing sintering [J]. Mater Des,2017,117:193.
53 Huang P K, Yeh J W. On high-entropy alloy and nitride coatings sputtered from AlCrNbSiTiV target [D]. Hsinchu: National Tsinghua University,2009.
54 And A E K, Eisenbraun E. Ultrathin diffusion barriers/liners for gigascale copper metallization [J]. Annual Rev Mater Res,2000, 30(1):363.
55 Chen Y Y, Duval T, Hung U D, et al. Microstructure and electrochemical properties of high entropy alloys: A comparison with type 304 stainless steel [J]. Corros Sci,2005,47(9):2257.
56 Tsai M H, Yeh J W, Gan J Y. Diffusion barrier properties of AlMoNbSiTaTiVZr high-entropy alloy layer between copper and silicon [J]. Thin Solid Films,2008,516(16):5527.
57 Chen D S, et al. Multiprincipal element AlCrTaTiZr-nitride nanocomposite film of extremely high thermal stability as diffusion barrier for Cu metallization [J]. Ecs Trans,2009,19(2):G37.
58 Chang S Y, et al. Improved diffusion-resistant ability of multicomponent nitrides: From unitary TiN to senary high-entropy (TiTaCrZrAlRu)N [J]. J Miner Met Mater Soc,2013,65(12):1790.
59 Chang S Y, Li C E, Huang Y C, et al. Structural and thermodyna-mic factors of suppressed interdiffusion kinetics in multi-component high-entropy materials [J]. Sci R,2014,4(2):4162.
60 Chang S Y, Li C E, Chiang S C, et al. 4-nm thick multilayer structure of multi-component(AlCrRuTaTiZr)Nx as robust diffusion barrier for Cu interconnects [J]. J Alloys Compd,2012,515(9):4.
61 Nagase T, Rack P D, et al. In-situ TEM observation of structural changes in nano-crystalline CoCrCuFeNi multicomponent high-entropy alloy(HEA)under fast electron irradiation by high voltage electron microscopy(HVEM) [J]. Intermetallics,2015,59:32.
62 Chen S H. The mechanical properties and microstructures of the(CrNbTaTiZr)Cx coating [D]. Hsinchu: National Tsinghua University,2012(in Chinese).
陈思寰. (CrNbTaTiZr)Cx薄膜的机械性质与微结构之研究[D]. 新竹:新竹清华大学,2012.
[1] 张泽疆, 李新梅, 朱春金, 李航, 杨定力. 纳米TiB2对CoCrFeNiSi高熵合金涂层耐磨与耐蚀性能的影响[J]. 材料导报, 2025, 39(3): 23090210-9.
[2] 赵兴源, 刘昕, 刘秋元, 邱肖盼, 张子月, 江社明, 张启富. 连续物理气相沉积带钢涂镀研究进展与应用现状[J]. 材料导报, 2025, 39(2): 24030032-9.
[3] 杨晨光, 王秀峰. 硅基SiC薄膜制备与应用研究进展[J]. 材料导报, 2024, 38(7): 23010118-14.
[4] 笪强, 马国政, 康嘉杰, 黄艳斐, 周永宽, 王海斗. 耐磨耐蚀高熵合金涂层性能研究进展[J]. 材料导报, 2024, 38(24): 23110145-10.
[5] 谢晓明, 沈鹰, 刘秀波, 朱正兴, 李明曦. Mn含量对激光熔覆FeCoCrNiMnx高熵合金涂层高温摩擦学性能的影响[J]. 材料导报, 2024, 38(23): 23120066-9.
[6] 舒林森, 张粲东, 于鹤龙, 张朝铭. 激光熔覆原位Ti-C-B-Al复合涂层的结构特征与力学性能[J]. 材料导报, 2024, 38(2): 22080162-5.
[7] 张志强, 杨倩, 于子鸣, 张天刚, 路学成, 王浩. 激光功率对Ti6Al4V/NiCr-Cr3C2熔覆层宏微观组织及性能的影响[J]. 材料导报, 2024, 38(2): 22100243-7.
[8] 刘春泉, 熊芬, 彭龙生, 黄伟, 林英华. 超高速激光熔覆技术的最新研究进展:关键技术特点及优势,设备研发及其技术参数[J]. 材料导报, 2024, 38(17): 23020075-19.
[9] 宁晨红, 高硕洪, 郑江鹏, 王枭, 杨军红, 苏允海, 刘敏, 闫星辰. 蓝光激光熔覆纯铜覆层的组织及性能[J]. 材料导报, 2024, 38(17): 23040078-7.
[10] 李占明, 王宏宇, 孙晓峰, 王梦璐, 王瑞, 宋巍. 超声振动在激光熔覆中的作用机制及研究进展[J]. 材料导报, 2024, 38(16): 23040040-8.
[11] 操慧珺, 李韦承, 张天刚, 张宏伟, 张志强. TC4表面WC/Ni-MoS2钛基复合涂层组织与摩擦学性能[J]. 材料导报, 2024, 38(15): 24020099-8.
[12] 魏新龙, 戴凡昌, 付二广, 班傲林, 张超. 单道激光熔覆高熵合金工艺优化及复合涂层耐冲蚀性能研究[J]. 材料导报, 2024, 38(14): 23020130-7.
[13] 肖华强, 尹星贵, 冯进宇, 肖易, 龚玉婷. TC4钛合金表面激光熔覆Ti-Mo-Al-B复合涂层的组织及摩擦磨损性能[J]. 材料导报, 2024, 38(12): 22080075-6.
[14] 陈飞寰, 蔡召兵, 董颖辉, 林广沛, 张坡, 卢冰文, 古乐. 激光熔覆NbMoTaWV难熔高熵合金涂层的高温氧化行为[J]. 材料导报, 2024, 38(10): 22110117-8.
[15] 李素丽, 马恺悦, 冯高磊, 熊杰, 李连强. 激光熔覆同路送丝光路结构设计及分析[J]. 材料导报, 2023, 37(6): 21090270-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed