Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (7): 65-71    https://doi.org/10.11896/j.issn.1005-023X.2017.07.010
  材料综述 |
高熵合金涂层制备及其应用的研究进展*
赵钦1,2,马国政2,王海斗2,李国禄1,陈书赢2,周羊羊1
1 河北工业大学材料科学与工程学院,天津 300130;
2 装甲兵工程学院装备再制造技术国防科技重点实验室,北京 100072
Review on Preparation and Application of High-entropy Alloy Coatings
ZHAO Qin1,2, MA Guozheng2, WANG Haidou2, LI Guolu1,CHEN Shuying2, ZHOU Yangyang1
1 School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130;
2 National Key Lab for Remanufacturing, Academy of Armored Forces Engineering, Beijing 100072
下载:  全 文 ( PDF ) ( 2072KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高熵合金涂层又称多主元合金涂层,是一种新型合金涂层。受高熵效应的影响,涂层的组织结构主要由单一的BCC、FCC或者HCP固溶体相构成,且易于形成非晶、纳米晶和纳米复合物,呈现出优异的综合力学性能、抗高温氧化性能、耐辐射性能和生物兼容性能等,具有重要的研究价值和应用前景。分别从涂层的主元数量和位形熵值两方面对高熵合金涂层的概念进行了阐述,比较分析了热喷涂、激光熔覆以及物理气相沉积等几类常用的高熵合金涂层制备工艺的优点和不足,总结了高熵合金涂层的工业应用现状,最后指出了高熵合金涂层在目前的研究中存在的问题并展望了其未来的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵钦
马国政
王海斗
李国禄
陈书赢
周羊羊
关键词:  高熵合金涂层  多主元合金涂层  激光熔覆  热喷涂  物理气相沉积    
Abstract: High-entropy alloy coatings(HEACs), also known as multi-principal-element alloy coatings, are new kinds of alloy coatings which primarily composed by single BCC, FCC or HCP solid solution, and amorphous, nanocrystalline and nanocomposite can be easily obtained under the influence of high entropy effect. HEACs have excellent comprehensive mechanical properties, high temperature oxidation resistance, radiation resistance, biocompatibility and so forth, therefore they have high research value and great application prospects. The conception of HEACs are elaborated from two aspects, namely, the number of principal element and the value of configuration entropy of coatings. The advantage and disadvantage of thermal spray, laser cladding and physical vapor deposition process which are commonly used methods to prepare HEACs are analyzed and compared. The current application of HEACs in industry is introduced. Finally, the existing problems of the current research about HEACs are pointed out and the future development direction of HEACs is also proposed.
Key words:  high-entropy alloy coatings    multi-principal-element alloy coatings    laser cladding    thermal spray    physical vapor deposition
               出版日期:  2017-04-10      发布日期:  2018-05-08
ZTFLH:  TG174.44  
基金资助: *国家自然科学基金(51535011;51675158;51675531)
作者简介:  赵钦:男,1993年生,硕士研究生,主要从事表面工程研究E-mail:zhaoqin4614@163.com李国禄:男,1966年生,博士,教授,博士研究生导师,主要从事表面工程和摩擦学研究E-mail:liguolu@hebut.edu.cn王海斗:男,1969年生,博士,研究员,主要从事表面工程和摩擦学研究E-mail:wanghaidou@aliyun.com
引用本文:    
赵钦,马国政,王海斗,李国禄,陈书赢,周羊羊. 高熵合金涂层制备及其应用的研究进展*[J]. 《材料导报》期刊社, 2017, 31(7): 65-71.
ZHAO Qin, MA Guozheng, WANG Haidou, LI Guolu,CHEN Shuying, ZHOU Yangyang. Review on Preparation and Application of High-entropy Alloy Coatings. Materials Reports, 2017, 31(7): 65-71.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.07.010  或          http://www.mater-rep.com/CN/Y2017/V31/I7/65
1 Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts [J]. Acta Mater,2017,122(1):448.
2 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv Eng Mater,2004,6(5):299.
3 Ranganathan S. Alloyed pleasures: Multimetallic cocktails [J]. Currentence,2003,85(10):1404.
4 Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater Sci Eng A, 2004,375-377(1):213.
5 Zhang Y, Zuo T T, Cheng Y, et al. High-entropy alloys with high saturation magnetization, electrical resistivity and malleability [J]. Scientific Reports,2013,3(6125):1335.
6 Santodonato L J, Zhang Y, Feygenson M, et al. Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy [J]. Nat Commun,2015,6:5964.
7 Lim X. Mixed-up metals make for stronger, tougher, stretchier alloys [J]. Nature,2016,533(7603):306.
8 Gludovatz B, et al. A fracture-resistant high-entropy alloy for cryogenic applications [J]. Science, 2014,345(6201):1153.
9 Butler T M, Alfano J P, Martens R L, et al. High-temperature oxidation behavior of Al-Co-Cr-Ni-(Fe or Si) multicomponent high-entropy alloys [J]. J Met,2014,67(1):1.
10 Senkov O N, Miller J D, Miracle D B, et al. Accelerated exploration of multi-principal element alloys with solid solution phases [J]. Nat Commun,2015,6:6529.
11 Zhao Y J, Qiao J W, et al. A hexagonal close-packed high-entropy alloy: The effect of entropy [J]. Mater Des,2016, 96:10.
12 Dong Y, Gao X, et al. A multi-component AlCrFe2Ni2 alloy with excellent mechanical properties [J]. Mater Lett, 2016,169:62.
13 Lu Y, et al. A promising new class of high-temperature alloys: Eutectic high-entropy alloys [J]. Scientific Reports,2014,4:6200.
14 Sui Yanwei, Chen Xiao, Qi Jiqiu, et al. Research progress of high-entropy alloys with multi-principal elements and its prospective application [J]. J Funct Mater,2016,47(5):50(in Chinese).
隋艳伟, 陈霄, 戚继球, 等. 多主元高熵合金的研究现状与应用展望[J]. 功能材料, 2016, 47(5):50.
15 Shi Wankai, Li Ning, et al. Research on tribological properties of sulfide layer produced by ion sulphurization [J]. J Chongqing University of Technology: Nat Sci,2015,29(9):48(in Chinese).
石万凯, 李宁, 等. 低温离子渗硫FeS涂层的摩擦学性能研究[J]. 重庆理工大学学报:自然科学版,2015, 29(9):48.
16 Huang P K, Yeh J W, Shun T T, et al. Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating [J]. Adv Eng Mater,2004,6(1-2):74.
17 Jiang L, et al. Microstructure evolution and wear behavior of the laser cladded CoFeNi2V0.5Nb0.75 and CoFeNi2V0.5Nb high-entropy alloy coatings [J]. J Thermal Spray Technol,2016,25(4):806.
18 King D J M, Middleburgh S C, Mcgregor A G, et al. Predicting the formation and stability of single phase high-entropy alloys [J]. Acta Mater,2016,104:172.
19 Yeh J W, Lin S J, Tsai M H, et al. High-entropy alloys [M]. Berlin:Springer,2016:8.
20 Haupt P. Thermodynamics of solids [J]. Am J Phys,1962,30(10):778.
21 Gaskell D R. Introduction to the thermodynamics of materials [J]. J Am Ceram Soc,2008,56(7):355.
22 Takeuchi A, Inoue A. Calculations of mixing enthalpy and mismatch entropy for ternary amorphous alloys [J]. Mater Trans, 2000,41(11):1372.
23 Murty B S, Yeh J W, Ranganathan S. High entropy alloys [M]. Amsterdam:Elsevier,2014:15.
24 Fultz B. Vibrational thermodynamics of materials [J]. Progress Mater Sci,2010,55(4):247.
25 Yeh J W. Alloy design strategies and future trends in high-entropy alloys [J]. J Miner Met Mater Soc,2013,65(12):1759.
26 Ma Zhuang, Wang Ni, et al. Progress in high-entropy alloy compo-site materials [J].Mater Rev: Rev,2015, 29(9):140(in Chinese).
马壮, 王倪, 等. 高熵合金基复合材料研究进展[J]. 材料导报:综述篇,2015,29(9):140.
27 Wang L M, Chen C C, et al. The microstructure and strengthening mechanism of thermal spray coating NixCo0.6Fe0.2CrySizAlTi0.2 high-entropy alloys [J]. Mater Chem Phys,2011,126(3):880.
28 Ang A S M, Berndt C C, Sesso M L, et al. Plasma-sprayed high entropy alloys: Microstructure and properties of AlCoCrFeNi and MnCoCrFeNi [J]. Metall Mater Trans A,2015,46(2):791.
29 Ang A S M. Comparison of plasma sprayed high entropy alloys with conventional bond coat materials [C]//International Thermal Spray Conference and Exposition (ITSC),2015.
30 Zhang Mina, Zhou Xianglin, Yu Xiangnan, et al. Synthesis and characterization of refractory TiZrNbWMo high-entropy alloy coa-ting by laser cladding [J]. Surf Coat Technol,2017,311(15):321.
31 Ma Mingxing, Liu Yuanxun, Gu Yu, et al. Synthesis of AlxCoCrNiMo high entropy alloy coatings by laser cladding [J]. Appl Laser,2010,30(6):433(in Chinese).
马明星, 柳沅汛, 谷雨, 等 激光制备AlxCoCrNiMo高熵合金涂层的研究[J]. 应用激光,2010,30(6):433.
32 Huang C, Zhang Y, Rui V, et al. Dry sliding wear behavior of laser clad TiVCrAlSi high entropy alloy coatings on Ti-6Al-4V substrate [J]. Mater Des,2012,41:338.
33 Liu Shida, Peng Cunyuan, Ma Mingxing, et al. Effect of Mn contents on the phase transition of the high entropy alloy prepared by laser cladding [J]. Mater Sci Forum,2016,849:64.
34 Dong Y, Zhou K, Lu Y, et al. Effect of vanadium addition on the microstructure and properties of AlCoCrFeNi high entropy alloy [J]. Mater Des,2014,57(5):67.
35 Huang Zufeng, Zhang Chong, Tang Qunhua, et al. Effects of WC particles on the microstructure and hardness of FeCoCrNiCu high-entropy alloy coating prepared by laser cladding [J]. China Surf Eng,2013,26(1):13(in Chinese).
黄祖凤, 张冲, 唐群华, 等. WC颗粒对激光熔覆FeCoCrNiCu高熵合金涂层组织与硬度的影响[J]. 中国表面工程,2013, 26(1):13.
36 Ocelík V, Janssen N, Smith S N, et al. Additive manufacturing of high-entropy alloys by laser processing [J]. J Miner Met Mater Soc,2016,68(7):1810.
37 石玉龙,闫凤英.薄膜技术与薄膜材料[M]. 北京:化学工业出版社,2015.
38 Cai Minghong. Microstructure and electrical property variation of high-entropy alloy films [D]. Hsinchu: National Tsinghua University,2002(in Chinese).
蔡铭洪. 多元高熵合金薄膜微结构及电性演变之研究[D]. 新竹:新竹清华大学,2002.
39 Alexander Pogrebnjak, et al. Irradiation resistance, microstructure and mechanical properties of nanostructured (TiZrHfVNbTa)N coatings [J]. J Alloys Compd,2016,DOI:10.1016/j.ja∥com.21016,04,064.
40 Pogrebnjak A D, Yakushchenko I V, Bagdasaryan A A, et al. Microstructure, physical and chemical properties of nanostructured (Ti-Hf-Zr-V-Nb)N coatings under different deposition conditions [J]. Mater Chem Phys,2014,147(3):1079.
41 Braic V, Vladescu A, Balaceanu M, et al. Nanostructured multi-element (TiZrNbHfTa)N and (TiZrNbHfTa)C hard coatings [J]. Surf Coat Technol,2012,211(42):117.
42 Braic V, Balaceanu M, Braic M, et al. Characterization of multi-principal-element (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings for biomedical applications [J]. J Mechan Behavior Biomed Mater,2012,10(10):197.
43 Braic V, Parau A C, et al. Effects of substrate temperature and carbon content on the structure and properties of (CrCu-NbTiY)C multicomponent coatings[J]. Surf Coat Technol,2014,258:996.
44 Shen W J, Tsai M H, Yeh J W. Machining performance of sputter-deposited(Al0.34Cr0.22Nb0.11Si0.11Ti0.22)50N50 high-entropy nitride coatings [J]. Coatings,2015,5(3):312.
45 Shen W J, Tsai M H, Chang Y S, et al. Effects of substrate bias on the structure and mechanical properties of (Al1.5CrNb0.5Si0.5Ti)N x coatings [J]. Thin Solid Films,2012,520(19):6183.
46 Shen W J, Tsai M H, Tsai K Y, et al. Superior oxidation resis-tance of (Al0.34Cr0.22Nb0.11Si0.11Ti0.22)50N50 high-eentropy nitride [J]. J Electrochem Soc,2013,160(11):C531.
47 Lv C F, et al. Structure and mechanical pro-perties of a-C/(AlCrWTaTiNb)CxNy composite films [J]. Surf Eng,2016,32(7):1.
48 Tsai D C, Deng M J, Chang Z C, et al. Oxidation resistance and characterization of (AlCrMoTaTi)SixN coating deposited via magnetron sputtering [J]. J Alloys Compd,2015,647:179.
49 Cheng K H, Tsai C W, et al. Effects of silicon content on the structure and mechanical properties of (AlCrTaTiZr)SixN coatings by reactive RF magnetron sputtering [J]. J Phys D,2011,44(20):7.
50 Cheng C Y, Yeh J W. High-entropy BNbTaTiZr thin film with excellent thermal stability of amorphous structure and its electrical properties [J]. Mater Lett,2016,185:456.
51 Yue T M, Xie H, Lin X, et al. Microstructure of laser re-melted AlCoCrCuFeNi high entropy alloy coatings produced by plasma spraying [J]. Entropy,2013,15(7):2833.
52 Shang C, Axinte E, Sun J, et al. CoCrFeNi(W1-xMox) high-entropy alloy coatings with excellent mechanical properties and corrosion resistance prepared by mechanical alloying and hot pressing sintering [J]. Mater Des,2017,117:193.
53 Huang P K, Yeh J W. On high-entropy alloy and nitride coatings sputtered from AlCrNbSiTiV target [D]. Hsinchu: National Tsinghua University,2009.
54 And A E K, Eisenbraun E. Ultrathin diffusion barriers/liners for gigascale copper metallization [J]. Annual Rev Mater Res,2000, 30(1):363.
55 Chen Y Y, Duval T, Hung U D, et al. Microstructure and electrochemical properties of high entropy alloys: A comparison with type 304 stainless steel [J]. Corros Sci,2005,47(9):2257.
56 Tsai M H, Yeh J W, Gan J Y. Diffusion barrier properties of AlMoNbSiTaTiVZr high-entropy alloy layer between copper and silicon [J]. Thin Solid Films,2008,516(16):5527.
57 Chen D S, et al. Multiprincipal element AlCrTaTiZr-nitride nanocomposite film of extremely high thermal stability as diffusion barrier for Cu metallization [J]. Ecs Trans,2009,19(2):G37.
58 Chang S Y, et al. Improved diffusion-resistant ability of multicomponent nitrides: From unitary TiN to senary high-entropy (TiTaCrZrAlRu)N [J]. J Miner Met Mater Soc,2013,65(12):1790.
59 Chang S Y, Li C E, Huang Y C, et al. Structural and thermodyna-mic factors of suppressed interdiffusion kinetics in multi-component high-entropy materials [J]. Sci R,2014,4(2):4162.
60 Chang S Y, Li C E, Chiang S C, et al. 4-nm thick multilayer structure of multi-component(AlCrRuTaTiZr)Nx as robust diffusion barrier for Cu interconnects [J]. J Alloys Compd,2012,515(9):4.
61 Nagase T, Rack P D, et al. In-situ TEM observation of structural changes in nano-crystalline CoCrCuFeNi multicomponent high-entropy alloy(HEA)under fast electron irradiation by high voltage electron microscopy(HVEM) [J]. Intermetallics,2015,59:32.
62 Chen S H. The mechanical properties and microstructures of the(CrNbTaTiZr)Cx coating [D]. Hsinchu: National Tsinghua University,2012(in Chinese).
陈思寰. (CrNbTaTiZr)Cx薄膜的机械性质与微结构之研究[D]. 新竹:新竹清华大学,2012.
[1] 姜志鹏, 陈小明, 赵坚, 张磊, 伏利, 刘伟. 激光熔覆技术制备非晶涂层的研究进展与展望[J]. 材料导报, 2019, 33(z1): 191-194.
[2] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[3] 陈文龙, 刘敏, 张吉阜, 邓子谦, 肖晓玲, 唐维学. 等离子喷涂-物理气相沉积7YSZ热障涂层高温氧化过程中的阻抗谱分析[J]. 材料导报, 2019, 33(4): 605-606.
[4] 陈枭, 白小波, 王洪涛, 纪岗昌. 超音速火焰喷涂多尺度WC-17Co粉末制备的金属陶瓷涂层的组织结构与性能[J]. 材料导报, 2019, 33(4): 684-688.
[5] 谢敏, 王梅丰, 戴晓琴, 雷剑波, 王春霞, 周圣丰. 综论偏晶合金的制备技术:外场下凝固、快速凝固及激光技术[J]. 材料导报, 2019, 33(3): 490-499.
[6] 刘健健,朱诚意,李光强. 连铸结晶器铜板表面涂镀层应用研究进展[J]. 材料导报, 2019, 33(17): 2831-2838.
[7] 陈守东. MCrAlY粘结层的微观组织及制备方法研究进展[J]. 材料导报, 2019, 33(15): 2582-2588.
[8] 高丽华, 冀晓鹃, 侯伟骜, 卢晓亮, 章德铭. 等离子物理气相沉积准柱状结构YSZ涂层的制备及抗热震性能[J]. 材料导报, 2019, 33(12): 1963-1968.
[9] 蒋智秋, 陈泉志, 董婉冰, 童庆, 李伟洲. Al对激光熔覆镍基合金涂层组织与性能的影响[J]. 材料导报, 2019, 33(12): 2035-2039.
[10] 郑丽娟, 付宇明, 宗磊, 齐童. 交变磁场对高硬熔覆层成型质量的影响[J]. 材料导报, 2018, 32(6): 905-908.
[11] 赵聪硕,邢志国,王海斗,李国禄,刘喆. 铁碳合金表面激光熔覆的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 418-426.
[12] 王瑶, 赵雪妮, 党新安, 王旭东, 张黎, 杨建军, 何富珍, 张伟刚, 刘庆瑶. 海洋环境下钢材表面镀铝工艺的研究进展[J]. 材料导报, 2018, 32(21): 3805-3813.
[13] 周超极, 朱胜, 王晓明, 韩国峰, 周克兵, 徐安阳. 热喷涂涂层缺陷形成机理与组织结构调控研究概述[J]. 材料导报, 2018, 32(19): 3444-3455.
[14] 葛茂忠, 项建云, 范真. 激光熔覆修复对TC4钛合金疲劳裂纹扩展速率的影响[J]. 材料导报, 2018, 32(16): 2803-2808.
[15] 张天刚, 孙荣禄, 张雪洋, 刘亚楠. Ti811表面激光熔覆原位合成TiC-TiB2复合Ti基涂层的微观组织分析[J]. 《材料导报》期刊社, 2018, 32(13): 2208-2213.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed