Please wait a minute...
材料导报  2024, Vol. 38 Issue (2): 22100243-7    https://doi.org/10.11896/cldb.22100243
  金属与金属基复合材料 |
激光功率对Ti6Al4V/NiCr-Cr3C2熔覆层宏微观组织及性能的影响
张志强1, 杨倩1, 于子鸣1, 张天刚1,*, 路学成1, 王浩2
1 中国民航大学航空工程学院,天津 300300
2 天津职业技术师范大学机械工程学院,天津 300222
Effect of Laser Power on Macromorphology, Microstructure and Performance of Ti6Al4V/NiCr-Cr3C2 Cladding Coatings
ZHANG Zhiqiang1, YANG Qian1, YU Ziming1, ZHANG Tiangang1,*, LU Xuecheng1, WANG Hao2
1 School of Aeronautical Engineering, University of Civil Aviation University of China, Tianjin 300300, China
2 School of Mechanical Engineering, Tianjin University of Technology and Education, Tianjin 300222, China
下载:  全 文 ( PDF ) ( 27812KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 激光功率是影响熔覆层质量的重要因素,为揭示激光功率对Ti6Al4V/NiCr-Cr3C2复合涂层成形质量、微观组织及耐磨性能等多方面的影响规律,采用同轴送粉、多道搭接激光熔覆技术在Ti6Al4V基材表面熔覆NiCr-Cr3C2粉末制备出碳化钛增强钛基复合涂层。通过渗透探伤、光学显微镜、X射线衍射仪、扫描电子显微镜及配套能谱仪等测试与表征方法分析熔覆层表面裂纹、截面形貌、孔隙率、稀释率、几何特征以及微观组织等。通过维氏显微硬度计和旋转式摩擦磨损试验机测试熔覆层显微硬度和耐磨性能,最后综合成形、组织与性能等方面的影响对熔覆层质量进行评价。结果表明,激光功率对熔覆层成形质量的影响显著。激光功率为1 100 W和1 300 W时熔覆层表面存在大量裂纹、气孔等缺陷。随着激光功率提高,熔覆层的熔高、熔宽、熔深及稀释率等均不断提高,裂纹率、孔隙率等持续降低。激光功率对涂层内物相种类的影响较小,主要物相为增强相TiC和基体相CrTi4。激光功率为1 500 W和1 700 W时熔覆层的硬度相对较高,且磨损率较低。综合考虑激光功率对熔覆层的多方面影响,最后确定最优激光功率为1 500 W,在此激光功率下制备出的熔覆层具有相对较好的成形质量和优异的耐磨性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张志强
杨倩
于子鸣
张天刚
路学成
王浩
关键词:  Ti6Al4V  激光熔覆  激光功率  成形质量  微观组织  摩擦磨损    
Abstract: Laser power is an important factor affecting the quality of the cladding coatings. In order to reveal the influence of laser power on the forming quality, microstructure, and wear resistance of Ti6Al4V/NiCr-Cr3C2 composite coating, multi-track overlapping TiC reinforced composite coatings were prepared on the surface of Ti6Al4V substrate by laser cladding technology with coaxial powder feeding. The surface cracks, cross-section morphology, porosity, dilution rate, geometric characteristics, and microstructure of the cladding coatings were analyzed by penetration detection, optical microscopy, X-ray diffraction, and scanning electron microscopy (SEM) with energy dispersive spectrometer (EDS). Vickers microhardness tester and friction and wear tester were used to measure the microhardness and wear resistance of the cladding coatings. Finally, the quality of the cladding coatings was evaluated based on the influence of forming, microstructure and performance. The results showed that the laser power had a significant effect on the forming quality of the cladding coating. When the laser power was 1 100 W and 1 300 W, there were many defects such as cracks and pores on the surface of the cladding coating. With the increase of laser power, the melting height, melting width, melting depth, and dilution rate of the cladding coating were improved continuously. However, the crack rate and porosity continued to decrease. The laser power had little effect on the types of phases in the coatings, and the main phases were the reinforcement phase TiC and the matrix phase CrTi4. When the laser power was 1 500 W and 1 700 W, the hardness of the cladding coating was high, and the wear rate was low. Considering the influence of laser power on the cladding coatings in many aspects, the optimal laser power was finally determined as 1 500 W. The cladding coating prepared under this laser power had good forming quality and excellent wear resistance.
Key words:  Ti6Al4V    laser cladding    laser power    forming quality    microstructure    wear resistance
出版日期:  2024-01-25      发布日期:  2024-01-26
ZTFLH:  TG146  
基金资助: 航空科学基金(2020Z049067002);天津市教委科研计划项目(2020KJ020);国家自然科学基金(51905536);天津市科技计划项目(21YDTPJC00430)
通讯作者:  *张天刚,中国民航大学航空工程学院副教授、硕士研究生导师。2005年至今一直在中国民航大学工作,于2016年获得天津工业大学博士学位。目前主要从事金属材料激光表面改性与金属材料激光再制造等方面的研究。发表论文50余篇,包括Journal of Alloys and Compounds、Materials Letters、Materials Science and Engineering: A、Journal of Materials Research and Technology、Journal of Materials Engineering and Performance、Ceramics International等。tgzhang@cauc.edu.cn   
作者简介:  张志强,中国民航大学航空工程学院副教授、硕士研究生导师。2012年河北工业大学材料加工工程专业硕士毕业,2018年天津大学材料加工工程专业博士毕业后到中国民航大学工作至今。目前主要从事焊接与电弧增材、表面改性等方面的研究工作。发表论文40余篇,包括Corrosion Science、Applied Surface Science、Materials & Design、Tribology International、Surface & Coatings Technology、Journal of Manufacturing Processes等。
引用本文:    
张志强, 杨倩, 于子鸣, 张天刚, 路学成, 王浩. 激光功率对Ti6Al4V/NiCr-Cr3C2熔覆层宏微观组织及性能的影响[J]. 材料导报, 2024, 38(2): 22100243-7.
ZHANG Zhiqiang, YANG Qian, YU Ziming, ZHANG Tiangang, LU Xuecheng, WANG Hao. Effect of Laser Power on Macromorphology, Microstructure and Performance of Ti6Al4V/NiCr-Cr3C2 Cladding Coatings. Materials Reports, 2024, 38(2): 22100243-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22100243  或          https://www.mater-rep.com/CN/Y2024/V38/I2/22100243
1 Li Y, Zhao Y Q, Zeng W D. Materials Reports, 2020, 34(S1), 280 (in Chinese).
李毅, 赵永庆, 曾卫东. 材料导报, 2020, 34(S1), 280.
2 Tan J H, Sun R L, Niu W, et al. Materials Reports, 2020, 34(15), 15132 (in Chinese).
谭金花, 孙荣禄, 牛伟, 等. 材料导报, 2020, 34(15), 15132.
3 Gu J, Liu Z P, Xu Y J, et al. Applied Laser, 2020, 40(3), 547 (in Chinese).
顾俊, 刘钊鹏, 徐友钧, 等. 应用激光, 2020, 40(3), 547.
4 Zhang L T, Liu D X, Zhang W Q, et al. Surface Technology, 2020, 49(8), 97 (in Chinese).
张蕾涛, 刘德鑫, 张伟樯, 等. 表面技术, 2020, 49(8), 97.
5 Li H B, Gao Q Q, Li K Y, et al. Chinese Journal of Lasers, 2021, 48(18), 163 (in Chinese).
李洪波, 高强强, 李康英, 等. 中国激光, 2021, 48(18), 163.
6 Xia T C, Liu T, Zhang L, et al. Heat Treatment of Metals, 2021, 46(5), 196 (in Chinese).
夏同川, 刘汀, 张林, 等. 金属热处理, 2021, 46(5), 196.
7 Zhang Z Q, Yang F, Zhang H W, et al. Materials Characterization, 2021, 171, 110732.
8 Zhang Z Q, Yang F, Zhang H W, et al. Acta Aeronautica et Astronautica Sinica, 2021, 42(7), 43 (in Chinese).
张志强, 杨凡, 张宏伟, 等. 航空学报, 2021, 42(7), 43.
9 Meng G R, Zhu L D, Zhang J D, et al. Optik, 2021, 240, 166828.
10 Monammed J K, Sami I A, Ali S H. Optics and Lasers in Engineering, 2013, 51(2), 159.
11 Deng D W, Chang Z D, Ma Y B, et al. Applied Laser, 2021, 41(1), 83 (in Chinese).
邓德伟, 常占东, 马云波, 等. 应用激光, 2021, 41(1), 83.
12 Shen Y H, Zhang Y L, Li T, et al. Journal of Dalian University of Technology, 2017, 57(3), 247 (in Chinese).
沈毅鸿, 张元良, 李涛, 等. 大连理工大学学报, 2017, 57(3), 247.
13 Nie M H, Zhang S, Wang Z Y, et al. Materials Chemistry and Physics, 2022, 275, 125236.
14 Shu F Y, Zhang B L, Liu T, et al. Surface and Coatings Technology, 2019, 358, 667.
15 Yang G F, Gao F, Cui J. Surface Technology, 2023, 52(1), 346 (in Chinese).
杨广峰, 郜峰, 崔静. 表面技术, 2023, 52(1), 346.
16 Liang W X, Yang Y, Qi K, et al. Surface and Coatings Technology, 2021, 427, 127816.
17 Zhao S G, Li C L. Hot Working Technology, 2016, 45(16), 149 (in Chinese).
赵树国, 李成龙. 热加工工艺, 2016, 45(16), 149.
18 Liu G Z, Zhong W H, Gao Y. Surface Technology, 2012, 41(5), 89 (in Chinese).
刘贵仲, 钟文华, 高原. 表面技术, 2012, 41(5), 89.
19 Chen Z J, Zhang Q L, Lou C H, et al. Applied Laser, 2013, 33(1), 7 (in Chinese).
陈智君, 张群莉, 楼程华, 等. 应用激光, 2013, 33(1), 7.
20 Song W L, Zhu B D, Gan C H, et al. Chinese Journal of Lasers, 1995, 22(4), 309 (in Chinese).
宋武林, 朱蓓蒂, 甘翠华, 等. 中国激光, 1995, 22(4), 309.
21 Li Z G, Peng B. Materials Protection, 2016, 49(11), 61 (in Chinese).
李振纲, 彭波. 材料保护, 2016, 49(11), 61.
22 Hou S X, Zhao J K, Li Q, et al. Materials Reports, 2022, 36(S1), 388 (in Chinese).
侯锁霞, 赵江昆, 李强, 等. 材料导报, 2022, 36(S1), 388.
23 Lv X R, Ma X W, Dong L H, et al. Journal of Functional Materials, 2020, 51(6), 6034 (in Chinese).
吕晓仁, 马孝威, 董丽虹, 等. 功能材料, 2020, 51(6), 6034.
24 Halsarav B, Saha P. Materials Today:Proceedings, 2018, 5(5), 13090.
25 Zhou C Y, Zhao S S, Wang Y B, et al. Journal of Materials Processing Technology, 2015, 216, 369.
26 Mohammad N, Reza S R, Masoud B. Optics and Laser Technology, 2018, 100, 265.
27 Yang D, Ning Y H, Zhu Y G, et al. Materials Reports, 2017, 31(24), 133 (in Chinese).
杨丹, 宁玉恒, 赵宇光, 等. 材料导报, 2017, 31(24), 133.
28 Jin Y X, Liu S W. Rare Metal Materials and Engineering, 2005, 34(10), 24 (in Chinese).
金云学, 刘夙伟. 稀有金属材料与工程, 2005, 34(10), 24.
29 Liu Y N, Sun R L, Zhang T G. Heat Treatment of Metals, 2018, 43(9), 16 (in Chinese).
刘亚楠, 孙荣禄, 张天刚. 金属热处理, 2018, 43(9), 16.
[1] 张泽疆, 李新梅, 朱春金, 李航, 杨定力. 纳米TiB2对CoCrFeNiSi高熵合金涂层耐磨与耐蚀性能的影响[J]. 材料导报, 2025, 39(3): 23090210-9.
[2] 卞宏友, 柳金生, 刘伟军, 张广泰, 姚佳彬, 邢飞. 激光沉积修复GH738/K417G合金时效热处理组织性能分析[J]. 材料导报, 2025, 39(3): 23110265-6.
[3] 周祎伟, 段海涛, 李健, 马利欣, 李文轩, 尤锦鸿, 贾丹. 外加磁场对摩擦副材料摩擦磨损及抗腐蚀性能影响的研究进展[J]. 材料导报, 2025, 39(2): 23110090-19.
[4] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[5] 宫晓威, 常庆明, 常佳琦, 鲍思前. 平面流铸制备Fe-3%Si硅钢微观组织的数值模拟[J]. 材料导报, 2025, 39(2): 23090214-7.
[6] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[7] 左志东, 刘先斌, 刘吉波, 汪小锋, 陈剑斌. 汽车用2024-T351铝合金的动态力学行为各向异性[J]. 材料导报, 2024, 38(8): 22080196-9.
[8] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[9] 孙华键, 郭德林, 李如庆, 侯良朋, 杨明辉, 孙金钊, 殷凤仕. 改性MCrAlY涂层的研究进展[J]. 材料导报, 2024, 38(7): 22120155-10.
[10] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[11] 张明玉, 运新兵, 伏洪旺. BASCA热处理对TC10钛合金组织与断裂韧性的影响[J]. 材料导报, 2024, 38(7): 22080020-6.
[12] 柴媛欣, 邢飞, 李殿起, 史建军, 苗立国, 卞宏友, 闫成鑫. 金属材料激光增材制造路径规划研究现状与展望[J]. 材料导报, 2024, 38(4): 22060243-6.
[13] 张天刚, 潘启越, 张志强, 曹思雨. 铝合金表面阳极氧化膜激光清洗机制分析[J]. 材料导报, 2024, 38(24): 23100128-10.
[14] 张勇, 王斌斌, 刘琛, 李斌强, 赵俊波, 李志文, 李哲, 赵春志, 王亮, 苏彦庆. 增材制造金属材料在海洋环境下的耐蚀性能——综述[J]. 材料导报, 2024, 38(23): 23080239-11.
[15] 谢晓明, 沈鹰, 刘秀波, 朱正兴, 李明曦. Mn含量对激光熔覆FeCoCrNiMnx高熵合金涂层高温摩擦学性能的影响[J]. 材料导报, 2024, 38(23): 23120066-9.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed