Please wait a minute...
材料导报  2024, Vol. 38 Issue (24): 23100128-10    https://doi.org/10.11896/cldb.23100128
  金属与金属基复合材料 |
铝合金表面阳极氧化膜激光清洗机制分析
张天刚*, 潘启越, 张志强, 曹思雨
中国民航大学航空工程学院,天津 300300
Analysis of Laser Cleaning Mechanism of Anodic Oxide Film on Aluminium Alloy Surface
ZHANG Tiangang*, PAN Qiyue, ZHANG Zhiqiang, CAO Siyu
School of Aviation Engineering, China Civil Aviation University, Tianjin 300300, China
下载:  全 文 ( PDF ) ( 8591KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了揭示铝合金表面阳极氧化膜纳秒脉冲激光清洗机制及其交互特点,采用Comsol模拟与清洗实验相结合的方式,研究了四种激光功率(P=20 W,35 W,50 W和65 W)作用下,单脉冲和多脉冲激光清洗铝合金表面氧化膜变化规律。结果表明,四种功率条件下单脉冲实验清洗面积均大于烧蚀模拟面积;当P=20 W时,氧化膜未发生破坏,其表面污染碳被去除,其余三种功率条件下清洗表面均发生了烧损,但实验烧损区域均小于烧蚀模拟结果;在烧蚀和等离子体冲击耦合产生的热应力作用下,氧化膜发生了开裂和局部崩损;多脉冲激光清洗过程中,等离子体冲击和烧蚀均产生了叠加区域,清洗面积和深度均大于单脉冲实验结果。研究指出,氧化膜激光清洗过程中存在烧蚀、等离子体冲击和热应力三种清洗机制,等离子体冲击区包括激光光斑辐照区和非辐照区,光斑辐照区内三种清洗机制共同作用,非辐照区内等离子体冲击和热应力交互耦合作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张天刚
潘启越
张志强
曹思雨
关键词:  激光清洗  激光功率  氧化膜  数值模拟  清洗机制    
Abstract: In order to reveal the mechanism of nanosecond pulsed laser cleaning of the anodic oxide film on the surface of aluminium alloy and its inte-raction characteristics, a combination of Comsol simulation and cleaning experiments was used to study the changing law of the oxide film on the surface of aluminium alloy cleaned by single-pulse and multi-pulse laser under four kinds of laser actions with powers of 20 W, 35 W, 50 W and 65 W. The results showed that the single pulse experimental cleaning area under the four power conditions was larger than the area of ablation simulation; when P=20 W, the oxide film was not destroyed, and its surface contamination carbon was removed, the remaining three power conditions under the cleaning of the surface ablation, but the experimental ablation area was smaller than that of ablation simulation. Under the thermal stress generated by the coupling of the ablation and plasma shock, the oxide film cracking and local chipping occurred. In the multi-pulse laser cleaning process, there were superposition areas caused by plasma shock and ablation, and the cleaning area and depth were larger than those of the single-pulse experimental. This study points out that there are three cleaning mechanisms in the laser cleaning process of oxide film, namely, ablation, plasma shock and thermal stress. The plasma shock area includes laser spot irradiated area and non-irradiated area, and in irradiated area, the three cleaning mechanisms work together, while in the non-irradiated area, both the plasma shock and the thermal stress are interactively coupled.
Key words:  laser cleaning    laser power    oxide film    numerical simulation    cleaning mechanism
出版日期:  2024-12-25      发布日期:  2024-12-20
ZTFLH:  TG176  
基金资助: 国家自然科学基金(U2033211);中国民航大学研究生科研创新资助项目(2022YS032)
通讯作者:  * 张天刚,中国民航大学航空工程学院副教授、硕士研究生导师。2005年中国矿业大学(北京)机械电子工程专业硕士毕业后到中国民航大学工作至今,2016年天津工业大学机械设计及理论专业博士毕业。目前主要从事金属材料激光表面改性、金属材料激光再制造等方面的研究工作。在Ceramics International、Journal of Materials Engineering and Performance、Materials Characterization、Materials Letters、Lasers in Engineering、《中国激光》《光学学报》《材料工程》《航空学报》《复合材料学报》《焊接学报》《材料导报》《表面技术》《特种铸造及有色合金》和《金属热处理》等SCI、EI和中文核心期刊上以第一作者、通信作者发表相关学术论文50余篇。 113099506@qq.com   
引用本文:    
张天刚, 潘启越, 张志强, 曹思雨. 铝合金表面阳极氧化膜激光清洗机制分析[J]. 材料导报, 2024, 38(24): 23100128-10.
ZHANG Tiangang, PAN Qiyue, ZHANG Zhiqiang, CAO Siyu. Analysis of Laser Cleaning Mechanism of Anodic Oxide Film on Aluminium Alloy Surface. Materials Reports, 2024, 38(24): 23100128-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23100128  或          http://www.mater-rep.com/CN/Y2024/V38/I24/23100128
1 Wei X Q, Li H, Pu Y B, et al. Surface Technology, 2021, 50(8), 359 (in Chinese).
魏小琴, 李晗, 蒲亚博, 等. 表面技术, 2021, 50(8), 359.
2 Zhang T G, Duan J J, Liu T X, et al. Chinese Journal of Lasers, 2023, 50(16), 1602204 (in Chinese).
张天刚, 段俊杰, 刘天翔, 等. 中国激光, 2023, 50(16), 1602204.
3 Zhang G X, Hua X M, Huang Y, et al. Applied Surface Science, 2020, 506, 144666.
4 Wang W, Li X J, Liu W J, et al. Chinese Journal of Lasers, 2022, 49(16), 189 (in Chinese).
王蔚, 李相锦, 刘伟军, 等. 中国激光, 2022, 49(16), 189.
5 Zhang J K, Cheng X Q, Li Z N, et al. Journal of Materials Engineering, 2010(7), 49 (in Chinese).
张纪奎, 程小全, 郦正能, 等. 材料工程, 2010(7), 49.
6 Wang S J. Jiguang Qingxi Jishu Ji Yingyong, Metallurgical Industry Press, China, 2020, pp.10 (in Chinese).
王思捷. 激光清洗技术及应用, 冶金工业出版社, 2020, pp.10.
7 Xia P Y, Yin Y H, Cai A J, et al. Chinese Journal of Lasers, 2019, 46(1), 115 (in Chinese).
夏佩云, 尹玉环, 蔡爱军, 等. 中国激光, 2019, 46(1), 115.
8 Daminelli G, Kruger J, Kautek W, et al. Thin Solid Films, 2004, 467(1), 334.
9 Alshaer A W, Li L, Mistry A, et al. Optics & Laser Technology, 2014, 64, 162.
10 Alshaer A W, Rogers B D, Li L, et al. Computational Materials Science, 2017, 127, 161.
11 Wang W, Li X J, Liu W J, et al. Chinese Journal of Lasers, 2022, 49(16), 189 (in Chinese).
王蔚, 李相锦, 刘伟军, 等. 中国激光, 2022, 49(16), 189.
12 Mcquarrie M. Journal of the American Ceramic Society, 1954, 37(2), 91.
13 Samant A N, Dahotre N B. Journal of the Europran Ceramic Society, 2009, 29(6), 969.
14 Liu W Q, Yan C, Xie L C, et al. Chinese Journal of Lasers, 2014, 41(7), 78 (in Chinese).
刘为桥, 鄢锉, 谢林春, 等. 中国激光, 2014, 41(7), 78.
15 Song B X, Yu T B, Jiang X Y, et al. Journal of Northeastem University (Natural Science), 2020, 41(10), 1427 (in Chinese).
宋博学, 于天彪, 姜兴宇, 等. 东北大学学报(自然科学版), 2020, 41(10), 1427.
16 Bhaduri D, Ghara T, Penchev P, et al. Applied Surface Science, 2021, 558, 149887.
17 Wen T, Chen H, Wang Q, et al. Hot Working Technology, 2022, 51(18), 98 (in Chinese).
文婷, 陈辉, 汪倩, 等. 热加工工艺, 2022, 51(18), 98.
18 Cai S, Chen G Y, Zhou C, et al. Acta Physica Sinica, 2017, 66(13), 105 (in Chinese).
蔡颂, 陈根余, 周聪, 等. 物理学报, 2017, 66(13), 105.
19 Wang G Y, Zhang Y B, Wang H D, et al. Materials Reports, 2016, 30(19), 46 (in Chinese).
王桂阳, 张玉波, 王海斗, 等. 材料导报, 2016, 30(19), 46.
20 Henderson D B, Ghara T, Penchev P, et al. Applied Surface Science, 2021, 558, 149887.
21 Jiang Z J. Characteristic study on ionized atmosphere with intence laser. Master’s Thesis, Changchun University of Science and Technology, China, 2008 (in Chinese).
姜中蛟. 强激光作用下大气电离特性研究. 硕士学位论文, 长春理工大学, 2008.
22 Zhao J W, Wu T, Liao Q, et al. Laser Technology, 2022, 46(6), 835 (in Chinese).
赵佳伟, 吴涛, 廖青, 等. 激光技术, 2022, 46(6), 835.
23 Zhang G X. Investigation on laser cleaning mechanism of oxide layer, process parameters and the influence on laser welding of aluminum alloy. Master’s Thesis, Shanghai Jiao Tong University, China, 2020 (in Chinese).
张光星. 铝合金表面氧化层激光清洗机理、工艺及对激光焊接的影响研究. 硕士学位论文, 上海交通大学, 2020.
24 Zhu Y Q, Yin Y, Zhou L C, et al. Surface technology, 2022, 51(11), 1 (in Chinese).
朱熠奇, 殷艳, 周留成, 等. 表面技术, 2022, 51(11), 1.
25 Zhao W Q, Mei X S, Yang Z X. Ceramics International, 2022, 48(4), 4474.
26 Dittrich S, Barcikowski S, Gkce B. Opto-Electronic Advance, 2021, 4(1), 13.
27 Li J, Zhang W, Zheng H, et al. Optics & Laser Technology, 2023, 163.
28 Chai L J, Yuan S S, Huang W J, et al. Transactions of Nonferrous Metals Society of China, 2018, 28, 1530.
29 Zhang T G, Huang J H, Hou X Y, et al. Acta Aeronauticaet Astronautica Sinica, 2023, 44(11), 427656 (in Chinese).
张天刚, 黄嘉浩, 侯晓云, 等. 航空学报, 2023, 44(11), 427656.
30 Li N. Study on shock wave characteristics of laser plasma shielding. Master’s Thesis, Changchun University of Science and Technology, China, 2021 (in Chinese).
李娜. 激光等离子体屏蔽冲击波特性研究. 硕士学位论文, 长春理工大学, 2021.
31 Wang Y F, Yu Z, Li K M, et al. Chinese Journal of Lasers, 2022, 49(8), 80 (in Chinese).
王一飞, 虞宙, 李康妹, 等. 中国激光, 2022, 49(8), 80.
32 Ding K, Ye L. Journal of Materials Processing Technology, 2006, 178(1-3), 162.
33 Qian J, Zheng P, Ma Y, et al. Computational Materials Science, 2023, 220, 112035.
34 Yao L, Zongyang H, Jianan X, et al. The International Journal of Advanced Manufacturing Technology, 2023, 125, 3853.
[1] 郭鑫鑫, 魏正英, 张永恒, 张帅锋. 电弧增材制造传热传质数值模拟技术综述[J]. 材料导报, 2024, 38(9): 22090175-7.
[2] 牛克心, 余为, 郝颖. 通孔球壳胞元结构压缩力学性能[J]. 材料导报, 2024, 38(9): 22100287-6.
[3] 金浏, 张晓旺, 郭莉, 吴洁琼, 杜修力. 加载速率对锈蚀钢筋与混凝土粘结性能的影响[J]. 材料导报, 2024, 38(8): 22100011-9.
[4] 梁宁慧, 毛金旺, 游秀菲, 刘新荣, 周侃. 多尺度聚丙烯纤维混凝土弯曲疲劳寿命试验及数值模拟[J]. 材料导报, 2024, 38(4): 22040023-8.
[5] 金浏, 杨健, 吴洁琼, 杜修力. 考虑混凝土细观非均质性的钢筋混凝土结构疲劳寿命预测概率模型[J]. 材料导报, 2024, 38(20): 23090009-8.
[6] 郑莲宝, 李旺, 王松伟, 徐勇, 宋鸿武. 基于场量传递的流动-传热-凝固过程耦合计算模型及其应用[J]. 材料导报, 2024, 38(20): 23080032-7.
[7] 张志强, 杨倩, 于子鸣, 张天刚, 路学成, 王浩. 激光功率对Ti6Al4V/NiCr-Cr3C2熔覆层宏微观组织及性能的影响[J]. 材料导报, 2024, 38(2): 22100243-7.
[8] 邱飒蔚, 蒋家传, 叶拓, 张越, 雷贝, 王涛. AA7075-T6铝合金电阻点焊工艺参数优化研究[J]. 材料导报, 2024, 38(17): 23120177-8.
[9] 赵楠, 刘鹏, 王林, 林书行, 李昊阳. 回转窑中回收炉气与煤粉混合燃烧的数值模拟[J]. 材料导报, 2024, 38(16): 23040062-6.
[10] 闾川阳, 李科桥, 盛剑翔, 顾小龙, 石磊, 杨建国, 贺艳明. AlN/Cu钎焊接头残余应力的数值模拟研究[J]. 材料导报, 2024, 38(16): 23030229-9.
[11] 郑伍魁, 赵悦瑶, 王雅晨, 李辉. 用于泡沫混凝土制备的静态混合器模拟研究[J]. 材料导报, 2024, 38(15): 23010061-8.
[12] 姜琴, 刁珂龙, 杨谋存, 朱跃钊. 纳米流体中温热稳定性研究进展[J]. 材料导报, 2023, 37(S1): 23040330-10.
[13] 朱雪伟, 王海斗, 刘明, 朴钟宇. 等离子熔覆数值模拟研究现状[J]. 材料导报, 2023, 37(7): 21040228-9.
[14] 王群, 李晨宇, 周忠华, 曹文, 周子吉, 孙慧慧, 黄悦, 沈志奇. 化学钢化前后玻璃表面裂纹扩展的实验比较与数值模拟[J]. 材料导报, 2023, 37(5): 21050255-5.
[15] 李舒玥, 傅广, 李泓历, 彭庆国, 肖华强, 张钧星, 张泽华. 激光选区熔化增材制造吸收率的研究进展[J]. 材料导报, 2023, 37(24): 22040104-10.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed