Please wait a minute...
材料导报  2023, Vol. 37 Issue (5): 21050255-5    https://doi.org/10.11896/cldb.21050255
  无机非金属及其复合材料 |
化学钢化前后玻璃表面裂纹扩展的实验比较与数值模拟
王群1, 李晨宇1, 周忠华1,2,*, 曹文1, 周子吉1, 孙慧慧1, 黄悦1,2,*, 沈志奇3
1 厦门大学材料学院, 福建 厦门 361005
2 福建省先进材料重点实验室, 福建 厦门 361005
3 CSIRO Manufacturing, Gate 5, Romanby Road, Clayton, VIC 3168, Australia
Experimental Comparison and Numerical Simulation of Surface Crack Propagation of Cover Glass With and Without Chemically Tempering
WANG Qun1, LI Chenyu1, ZHOU Zhonghua1,2,*, CAO Wen1, ZHOU Ziji1, SUN Huihui1, HUANG Yue1,2,*, SHEN Zhiqi3
1 College of Materials, Xiamen University, Xiamen 361005, Fujian, China
2 Fujian Key Laboratory of Advanced Materials, Xiamen 361005, Fujian, China
3 CSIRO Manufacturing, Gate 5, Romanby Road, Clayton, VIC 3168, Australia
下载:  全 文 ( PDF ) ( 13971KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作对手机超薄盖板玻璃表面裂纹萌生及扩展过程进行了实验比较和数值模拟。结果表明:对于未经化学钢化处理的玻璃,在载荷为9.80 N的情况下,裂纹萌生时间为压痕出现后30 s;而对于化学钢化玻璃,即便在严苛环境条件下,在9.80 N的载荷作用下,缺陷压痕处未发现裂纹。ABAQUS数值模拟结果表明:(1)最大主张应力位于压印缺陷的四角,并沿径向向外扩展;(2)化学钢化玻璃的最大主张应力比未经化学钢化的玻璃低465 MPa。数值模拟得到的最大主张应力位置与实际裂纹萌生位置一致。对玻璃表面裂纹扩展行为的认识有助于高强度超薄盖板玻璃的研发。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王群
李晨宇
周忠华
曹文
周子吉
孙慧慧
黄悦
沈志奇
关键词:  盖板玻璃  裂纹萌生  裂纹扩展  化学钢化  数值模拟    
Abstract: This work focuses on experimental comparison and numerical simulation of the initiation and propagation of crack indentations on ultrathin cover glass. For the glass without chemically tempering, crack initiations were confirmed at 30 s after indentation defect imprinted by 9.80 N load in ambient environment. However, for the glass with chemically tempering, there were no cracks identified after the defect indented by a 9.80 N load in rigorous environment. ABAQUS numerical simulation results show that:(1)the maximum principal tensile stress is at the four corners of the defect and extends outward at radial directions;(2)the maximum principal tensile stress of the glass with chemically tempering is 465 MPa lower than that without chemically tempering. The position of the maximum claim stress obtained by numerical simulation is consistent with the actual crack initiation position. The insights about crack behaviors is beneficial to facilitating robust ultrathin cover glass development.
Key words:  cover glass    crack initiation    crack propagation    chemically tempering    numerical simulation
出版日期:  2023-03-10      发布日期:  2023-03-14
ZTFLH:  TB  
基金资助: 福建省科技重大专项(2014HZ0005);厦门大学科技计划(XDHT2017415A)
通讯作者:  *周忠华,厦门大学材料学院教授。1998 年毕业于日本三重大学,获无机材料科学专业博士学位。1998—2007 年任日本东芝陶瓷株式会社开发研究所主任研究员。2007 至今任厦门大学材料学院教授。主要从事玻璃表面功能化、环境净化材料及其应用、纳米材料合成及其应用的研究。已发表SCI、EI等论文30余篇。zzh@xmu.edu.cn
黄悦,厦门大学材料学院高级工程师。1990年本科毕业于武汉理工大学材料科学专业,2002年硕士毕业于日本三重大学。2011年至今任厦门大学材料学院高级工程师。主要从事陶瓷材料、玻璃表面功能化、环境净化材料及其应用的研究。已发表SCI、EI等论文30余篇。y.huang@xmu.edu.cn   
作者简介:  王群,厦门大学材料学院在读博士研究生。2018年6月在中国矿业大学获得材料加工工程工学学士学位,2021年7月在厦门大学获得材料加工工程工学硕士学位。主要研究方向为玻璃表面镀膜增强技术。
引用本文:    
王群, 李晨宇, 周忠华, 曹文, 周子吉, 孙慧慧, 黄悦, 沈志奇. 化学钢化前后玻璃表面裂纹扩展的实验比较与数值模拟[J]. 材料导报, 2023, 37(5): 21050255-5.
WANG Qun, LI Chenyu, ZHOU Zhonghua, CAO Wen, ZHOU Ziji, SUN Huihui, HUANG Yue, SHEN Zhiqi. Experimental Comparison and Numerical Simulation of Surface Crack Propagation of Cover Glass With and Without Chemically Tempering. Materials Reports, 2023, 37(5): 21050255-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050255  或          http://www.mater-rep.com/CN/Y2023/V37/I5/21050255
1 Hamilton L L. Japanese Journal of Applied Physics, 2016, 55(3), 03CA01.
2 Peng S, Ren H C, Cao X, et al. International Journal of Applied Glass Science, 2019, 10(3), 276.
3 Griffith A A. Philosphical Transactions of the Royal Society A, 1921, 221(582-593), 163.
4 Donald I W. Journal of Materials Science, 1989, 24(12), 4177.
5 Stephen F. International Journal of Applied Glass Science, 2012, 3(2), 89.
6 Januchta K, Smedskjaer M M. Journal of Non-Crystalline Solids:X, 2019, 1, 100007.
7 Gross T M. Journal of Non-Crystalline Solids, 2012, 358(24), 3445.
8 Gross T M, Tomozawa M, Koike A. Journal of Non-Crystalline Solids, 2009, 355(9), 563.
9 Morozumi H, Yoshida S, Matsuoka J. Journal of Non-Crystalline Solids, 2016, 444, 31.
10 Tobias K B, John C M, Morten M S. Journal of Non-Crystalline Solids, 2018, 491, 64.
11 Koike A, Akiba S, Sakagami T, et al. Journal of Non-Crystalline Solids, 2012, 358(24), 3438.
12 American Society of Testing Materials, ASTM Standard, ASTM E384 Standard test method for microind entation hardness of materials, America, 2011.
13 Imaoka M, Yasui I. Journal of Non-Crystalline Solids, 1976, 22(2), 315.
14 Yasui I, Imaoka M. Journal of Non-Crystalline Solids, 1982, 50(2), 219.
15 Lee J H, Gao Y F, Johanns K E, et al. Acta Materialia, 2012, 60(15), 5448.
16 Bruns S, Johanns K E, Rehman H, et al. Journal of the American Ceramic Society, 2017, 100, 1928.
17 Li C Y, Zhou Z H, Cao W, et al. International Journal of Applied Glass Science, 2019, 11(2), 329.
18 Kingery W D, Bowen H K, Uhlmann D R. Introduction to ceramics, John Wiley & Sons, America, 1976.
19 Sanya O T, Owoeye S S, Ajaji O J. Journal of Non-Crystalline Solids, 2018, 494, 9.
20 Phillip J, Ghatu S, Peter I, et al. Journal of the European Ceramic Society, 2012, 32(8), 1551.
21 Luo J, Wang H, Xi C Y, et al. Ceramics International, 2021, 47(4), 4914
[1] 闵军雄, 张敏男, 戴光泽, 赵君文. 层流等离子体淬火对GCr15轴承钢的滚动接触疲劳及损伤性能的影响[J]. 材料导报, 2023, 37(2): 21060076-7.
[2] 余国卿, 许永康, 王东亮, 牛勇, 司明达, 张茂, 龚攀, 王新云. 陶瓷颗粒增强Zr基非晶合金复合材料高温变形行为研究[J]. 材料导报, 2023, 37(1): 21110013-7.
[3] 王歧山, 何川, 陈旭. 金属工程材料腐蚀疲劳行为研究进展[J]. 材料导报, 2023, 37(1): 20100223-9.
[4] 王兆, 张新虎, 王召浩, 王冠, 惠永博, 郑伟, 丁阳, 朱丽兵, 邓勇军, 傅先刚, 恽迪, 柳文波. 基于MOOSE平台的UO2燃料性能分析[J]. 材料导报, 2022, 36(7): 21040019-7.
[5] 徐洲, 李晓延, 王小鹏, 王海东. 组合热源模型在焊接模拟中的应用现状与展望[J]. 材料导报, 2022, 36(6): 20070081-6.
[6] 李爽, 张青松, 戴光泽. 预制裂纹对等离子体淬火车轮材料磨损行为的影响[J]. 材料导报, 2022, 36(5): 20120250-7.
[7] 肖颍杰, 石少卿, 刘盈丰, 陈首, 廖瑜. 聚脲钢板复合层抗枪弹侵彻性能研究[J]. 材料导报, 2022, 36(23): 22010187-7.
[8] 肖昌伟, 李文晓. 树脂传递模塑成型工艺复合材料孔隙表征和孔隙形成预测研究进展[J]. 材料导报, 2022, 36(23): 21100167-7.
[9] 刘宇, 张桂芳, 漆鑫, 施哲, 严鹏, 姜琦. 电磁悬浮熔炼金属合金的研究进展:应用和数值模拟[J]. 材料导报, 2022, 36(21): 20080265-8.
[10] 刘玉宝, 王举金, 杨文, 刘风琴, 李亚琼, 崔凌霄, 张洋. LaFe合金在底吹氩钢包内熔化混匀的数值模拟研究[J]. 材料导报, 2022, 36(21): 21050172-7.
[11] 崔朝兴, 董世运, 胡效东, 闫世兴, 姜浩涌. 激光熔化沉积成形过程数值模拟研究现状[J]. 材料导报, 2022, 36(2): 20040221-6.
[12] 邹田春, 李龙辉, 巨乐章, 符记, 李晔. CFRP-铝合金板单、双搭接胶接接头刚度退化机理[J]. 材料导报, 2022, 36(19): 21050092-6.
[13] 赵鸿飞, 郭丽丽, 赵颖, 苑菁茹, 运新兵. AZ31镁合金板材单双杆连续挤压变形过程及组织性能的对比[J]. 材料导报, 2022, 36(18): 21040305-7.
[14] 易宗鑫, 李小强, 潘存良, 沈正章. TC4钛合金筒形收口件超塑胀形数值模拟及试验研究[J]. 材料导报, 2022, 36(18): 21040245-8.
[15] 杨瑞, 刘绍宏, 朱海澄, 孙旭东, 刘满门, 崔浩, 陈家林. 电接触材料电弧侵蚀研究进展[J]. 材料导报, 2022, 36(17): 20070113-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed