Please wait a minute...
材料导报  2022, Vol. 36 Issue (18): 21040305-7    https://doi.org/10.11896/cldb.21040305
  金属与金属基复合材料 |
AZ31镁合金板材单双杆连续挤压变形过程及组织性能的对比
赵鸿飞, 郭丽丽*, 赵颖, 苑菁茹, 运新兵
大连交通大学材料科学与工程学院,辽宁 大连 116028
Comparison of Deformation Process, Microstructure and Properties of AZ31 Mg Sheet Fabricated by Single and Double Rods Continuous Extrusion
ZHAO Hongfei, GUO Lili*, ZHAO Ying, YUAN Jingru, YUN Xinbing
College of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, Liaoning, China
下载:  全 文 ( PDF ) ( 5755KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作采用HyperXtrude有限元软件对AZ31镁合金板材连续挤压扩展变形过程进行了数值模拟,研究了单、双杆送料方式对连续挤压过程中板材的温度场、应变场和压力场分布的影响,并对两种进料方式制备的镁合金板材的微观组织及力学性能做了对比分析。结果表明:在3 r/min(63 mm/s)条件下挤压160 mm×8 mm的AZ31镁合金板材时,双杆挤压过程中坯料的应变值小于单杆挤压,由于变形量较小,金属在型腔中的变形温度较单杆连续挤压低10 ℃左右,且双杆挤压时型腔内的局部压力达到了800 MPa,明显大于单杆挤压。双杆进料条件下板材的平均晶粒尺寸为17.8 μm,更细小均匀,平均抗拉强度达到209 MPa,高于单杆挤压的产品,其中间焊缝区域的抗拉强度达到了218 MPa,说明焊合区的性能已超过了母材的性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵鸿飞
郭丽丽
赵颖
苑菁茹
运新兵
关键词:  AZ31镁合金  连续挤压  数值模拟  微观组织    
Abstract: In this work, numerical simulations of the continuous extrusion extending forming process were performed for AZ31 magnesium(Mg) alloy sheet by HyperXtrude software. The effect of feeding mode on distributions of the temperature, strain and stress of the sheet during the continuous extrusion were investigated in the single-rod and double-rod extrusion. Additionally, the microstructure and mechanical properties of the extruded Mg alloy sheets were examined under the two feeding modes as well. The results show that when the 160 mm×8 mm AZ31 Mg alloy sheet is extruded under the condition of 3 r/min (63 mm/s), the strain value of the billet in the double-rod extrusion process is less than that in the single-rod extrusion. Consequently, the temperature of the metal in the double-rod extrusion is about 10 ℃ lower than that in the single-rod feeding mode during continuous extrusion. The local stress inside the cavity during the double-rod extrusion reaches 800 MPa, which is significantly greater than that during the single-rod extrusion. The overall average grain size under the condition of double-rod feeding is 17.8 μm, which is smaller and more uniform. The average tensile strength of the product obtained by double-rod feeding reaches 209 MPa, which is higher than that of the single-rod extrusion product. The tensile strength of the middle weld zone is 218 MPa, indicating that the property of the welding zone has exceeded that of the base material.
Key words:  AZ31 Mg alloy    continuous extrusion    numerical simulation    microstructure
收稿日期:  2022-09-25      出版日期:  2022-09-25      发布日期:  2022-09-26
ZTFLH:  TG376  
基金资助: 辽宁省自然科学基金(2019-MS-035)
通讯作者:  *guolili@djtu.edu.cn   
作者简介:  赵鸿飞,大连交通大学材料科学与工程学院硕士研究生,本科毕业于大连交通大学,研究方向主要为轻合金塑性成形。郭丽丽,大连交通大学副教授。1997年取得大连铁道学院材料系学士学位,2004年获得日本千叶大学机械系硕士学位。2011年3月毕业于日本东北大学,获得材料加工博士学位。主要从事镁合金连续挤压技术方面的研究,重点研究方向是镁合金塑性成形中微观组织和织构演变的研究,镁合金板材、型材连续挤压成形工艺的有限元模拟和实验研究。发表相关论文20余篇。
引用本文:    
赵鸿飞, 郭丽丽, 赵颖, 苑菁茹, 运新兵. AZ31镁合金板材单双杆连续挤压变形过程及组织性能的对比[J]. 材料导报, 2022, 36(18): 21040305-7.
ZHAO Hongfei, GUO Lili, ZHAO Ying, YUAN Jingru, YUN Xinbing. Comparison of Deformation Process, Microstructure and Properties of AZ31 Mg Sheet Fabricated by Single and Double Rods Continuous Extrusion. Materials Reports, 2022, 36(18): 21040305-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21040305  或          http://www.mater-rep.com/CN/Y2022/V36/I18/21040305
1 Zhang D F, Fang L, Liu G P, et al. Ordnance Material Science and Engineering, 2010, 33(5), 96(in Chinese).
张丁非, 方霖, 刘郭平, 等. 兵器材料科学与工程, 2010, 33(5), 96.
2 Xu H, Liu J A, Xie S S.Magnesium alloy fabrication and processing technology, Metallurgical Industry Press, China, 2007,pp.1(in Chinese).
徐河,刘静安,谢水生.镁合金制备与加工技术,冶金工业出版社,2007,pp.1.
3 Zhang S H, Xu Y, Wang Z T, et al. World Sci-Tech R & D, 2001, 23(6),18(in Chinese).
张士宏, 许沂, 王忠堂, 等. 世界科技研究与发展, 2001, 23(6),18.
4 Pan F S, Han E H. Wrought magnesium alloys with high properties and manufactural technology, Science Press, China, 2007(in Chinese).
潘复生, 韩恩厚. 高性能变形镁合金及加工技术, 北京科学出版社, 2007.
5 Han C, Sun F T. Shanghai Nonferrous Metals, 2015, 36(2),85(in Chinese).
韩晨, 孙付涛. 上海有色金属, 2015, 36(2),85.
6 Han C. Nonferrous Metals Processing, 2015, 44(4),1(in Chinese).
韩晨. 有色金属加工, 2015, 44(4),1.
7 Liu G J, Xu J, Yang L Q. Chinese Journal of Rare Metals, 2012, 36 (3),477(in Chinese).
刘国钧, 徐骏, 杨柳青. 稀有金属, 2012, 36 (3),477.
8 Zhang J. Life extension and sustainable development of materials—selection and design of magnesium alloys, Chemical Industry Press, China, 2017,pp.1(in Chinese).
张津. 材料延寿与可持续发展—镁合金选用与设计, 化学工业出版社, 2017,pp.1.
9 Yang R B, Zhang S H. Continuous extrusion forming translations, Central South University of Technology Press, China, 1989(in Chinese).
杨如柏, 张胜华. 连续挤压译文集, 中南工业大学出版社, 1989.
10 Yun X B, Song B Y, Gao F. Metal Forming Technology, 2002, 20(3),46(in Chinese).
运新兵, 宋宝韫, 高飞. 金属成形工艺, 2002, 20(3),46.
11 Wu G M, Gao F, Fu R. Hot Working Technology, 2009, 38(17),39(in Chinese).
吴桂敏, 高飞, 符蓉. 热加工工艺, 2009, 38(17),39.
12 Yang J Y, Yun X B, Zhao Y. Chinese Journal of Rare Metals, 2016,40(4),307(in Chinese).
杨俊英, 运新兵, 赵颖, 等. 稀有金属, 2016, 40(4),307.
13 Liu X, Guo L L, Fu R. Journal of Dalian Jiaotong University, 2016, 37(3),79(in Chinese).
刘学,郭丽丽,付蓉. 大连交通大学学报, 2016, 37(3),79.
14 Guo L L, Fu R, Pei J Y, et al. Rare Metal Materials and Engineering, 2017, 46(6), 1626(in Chinese).
郭丽丽, 符蓉, 裴久杨, 等. 稀有金属材料与工程, 2017, 46(6),1626.
15 Chen C Y, Guo L L. Forging and Stamping Technology, 2019, 44(9),17(in Chinese).
陈重阳, 郭丽丽. 锻压技术, 2019, 44(9),17.
16 Wu G M. Continuous extrusion process test and numerical simulation of AZ31 magnesium alloy. Master's Thesis, Dalian Jiaotong University, China, 2009(in Chinese).
吴桂敏. AZ31镁合金连续挤压工艺试验及数值模拟. 硕士学位论文, 大连交通大学, 2009.
17 Zhao Y, Song B Y, Yan Z Y. Jounrnal of Materials Processing Technology, 2016(235),149.
18 Wang H S,Fu G S, Chen Y L, et al. Materials for Mechancial Enginee-ring, 2014, 38(5),95(in Chinese).
王火生, 傅高升, 陈永禄, 等. 机械工程材料, 2014, 38(5),95.
19 Li G Z, Sun Y D, Chen D R,et al. Hot Working Technology, 2014, 43(13),118(in Chinese).
李光振, 孙颖迪, 陈秋荣, 等. 热加工工艺, 2014, 43(13), 118.
20 Zhao Y, Song B Y, Li B, et al. Journal of Plasticity Engineering, 2015, 22(1),18(in Chinese).
赵颖, 宋宝韫, 李冰,等. 塑性工程学报, 2015, 22(1),18.
21 Yuan J R.Numerical simulation and microstructure evolution of AZ31 magnesium alloy continuous extrusion sheet forming process. Master's Thesis, Dalian Jiaotong University, China, 2019(in Chinese).
苑菁茹. AZ31镁合金连续挤压板材成形工艺数值模拟与组织演化的研究. 硕士学位论文, 大连交通大学, 2019.
22 Guo L L, Yuan J R, Pei J Y,et al. Materials Science and Engineering: A, 2021, 819, 141456.
[1] 阎亚雯, 余竹焕, 高炜, 费祯宝, 刘旭亮, 王晓慧. 共晶高熵合金力学性能的研究进展[J]. 材料导报, 2022, 36(Z1): 21050264-7.
[2] 郭瑞琪, 王秀琦, 刘国怀, 李天瑞, 王昭东. Ti-44Al-5Nb-1Mo-(V,B)合金热变形过程中的相变、再结晶行为及组织调控[J]. 材料导报, 2022, 36(Z1): 22010111-6.
[3] 史天宇, 孔维雄, 陈雨琳, 宁保群, 董治中. 新型高氮马氏体耐热铸钢的热处理及相变解析[J]. 材料导报, 2022, 36(Z1): 20120084-6.
[4] 李伟, 曹睿, 闫英杰. 不同热处理态下粉末冶金花纹钢的组织性能及拉伸断裂行为[J]. 材料导报, 2022, 36(9): 21020104-7.
[5] 王兆, 张新虎, 王召浩, 王冠, 惠永博, 郑伟, 丁阳, 朱丽兵, 邓勇军, 傅先刚, 恽迪, 柳文波. 基于MOOSE平台的UO2燃料性能分析[J]. 材料导报, 2022, 36(7): 21040019-7.
[6] 肖棚, 高杰维, 刘里根, 韩靖. 激光熔覆修复EA4T车轴钢显微组织和强度评价[J]. 材料导报, 2022, 36(7): 21070180-7.
[7] 于天阳, 马国政, 郭伟玲, 何鹏飞, 黄艳斐, 刘明, 王海斗. 冷喷涂不同陶瓷含量Cu-Ti3SiC2复合涂层的微观组织及性能研究[J]. 材料导报, 2022, 36(7): 21120172-6.
[8] 徐洲, 李晓延, 王小鹏, 王海东. 组合热源模型在焊接模拟中的应用现状与展望[J]. 材料导报, 2022, 36(6): 20070081-6.
[9] 袁战伟, 常逢春, 马瑞, 白洁, 郑俊超. 增材制造镍基高温合金研究进展[J]. 材料导报, 2022, 36(3): 20090201-9.
[10] 崔朝兴, 董世运, 胡效东, 闫世兴, 姜浩涌. 激光熔化沉积成形过程数值模拟研究现状[J]. 材料导报, 2022, 36(2): 20040221-6.
[11] 易宗鑫, 李小强, 潘存良, 沈正章. TC4钛合金筒形收口件超塑胀形数值模拟及试验研究[J]. 材料导报, 2022, 36(18): 21040245-8.
[12] 于晓全, 樊丁, 黄健康. 焊丝成分对铝/钢电弧辅助激光熔钎焊接头组织及力学性能的影响[J]. 材料导报, 2022, 36(18): 21050207-5.
[13] 杨瑞, 刘绍宏, 朱海澄, 孙旭东, 刘满门, 崔浩, 陈家林. 电接触材料电弧侵蚀研究进展[J]. 材料导报, 2022, 36(17): 20070113-7.
[14] 肖寒, 陈昊, 熊迟, 陈磊, 张雄超, 周瑀杭, 崔鋆昕. 重熔温度对半固态挤压铜合金轴套组织性能的影响[J]. 材料导报, 2022, 36(17): 21050057-5.
[15] 张昌青, 师文辰, 罗德春, 王树文, 刘晓, 崔国胜, 陈波阳, 张忠科, 辛舟, 芮执元. 锥形端面对铝/钢连续驱动摩擦焊温度场的数值模拟研究[J]. 材料导报, 2022, 36(15): 21040043-7.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed