Please wait a minute...
材料导报  2022, Vol. 36 Issue (7): 21040019-7    https://doi.org/10.11896/cldb.21040019
  无机非金属及其复合材料 |
基于MOOSE平台的UO2燃料性能分析
王兆1, 张新虎2, 王召浩1, 王冠3,4, 惠永博2, 郑伟5, 丁阳6, 朱丽兵6, 邓勇军5, 傅先刚5, 恽迪1,7, 柳文波1
1 西安交通大学核科学与技术学院,西安 710049
2 中国核动力研究设计院,成都 610213
3 中国科学院近代物理研究所,兰州 730000
4 中国科学院大学核科学与技术学院,北京 100049
5 中广核研究院有限公司,广东 深圳 518000
6 上海核工程研究设计院有限公司,上海 200233
7 西安交通大学动力工程多相流国家重点实验室,西安 710049
Performance Analysis of UO2 Fuel Based on MOOSE Platform
WANG Zhao1, ZHANG Xinhu2, WANG Zhaohao1, WANG Guan3,4, XI Yongbo2, ZHENG Wei5, DING Yang6, ZHU Libing6, DENG Yongjun5, FU Xiangang5, YUN Di1,7, LIU Wenbo1
1 School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
2 Nuclear Power Institute of China, Chengdu 610213, China
3 Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
4 School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
5 China Nuclear Power Technology Research Institute Co.,Ltd., Shenzhen 518000, Guangdong, China
6 Shanghai Nuclear Engineering Research and Design Institute, Shanghai 200233, China
7 State Key Laboratory of Multi-phase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
下载:  全 文 ( PDF ) ( 4182KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了更好地模拟燃料棒辐照肿胀、辐照蠕变、热蠕变、裂变气体释放、芯块包壳力学接触(PCMI)等物理过程以及辐照-热-力等物理场之间的耦合,基于多物理场耦合(MOOSE)平台开发了一款适用于压水堆棒状UO2燃料的性能分析程序,利用Halden反应堆IFA-432r1、IFA-513r6实验数据进行了验证并对稳态与瞬态工况下的燃料性能进行了初步分析。结果表明,本工作开发的程序能较为准确地模拟反应堆运行过程中燃料棒的辐照-热学-力学行为、稳态运行工况下,在包壳外表面的轴向方向会出现周期性的应力峰;瞬态时,功率的突变会导致燃料芯块中心温度以及芯包接触压力发生显著变化,从而显著影响燃料棒的安全性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王兆
张新虎
王召浩
王冠
惠永博
郑伟
丁阳
朱丽兵
邓勇军
傅先刚
恽迪
柳文波
关键词:  核燃料  有限元  多物理场耦合(MOOSE)平台  数值模拟    
Abstract: In order to better simulate the physical processes of nuclear fuel radiation swelling, radiation creep, thermal creep, fission gas release, pellet cladding mechanical interaction (PCMI) and other physical processes, as well as the coupling between radiation-heat-force and other physical fields, a performance analysis program for PWR UO2 fuel has been developed based on the multiphysics object-oriented simulation environment (MOOSE) platform. The experimental data of Halden reactor IFA-432r1 and IFA-513r6 rods were used to verify the steady-state and tran-sient performance, and preliminary analysis of fuel performance under the conditions was conducted. The results show that the program deve-loped in this paper can fairly accurately simulate the radiation-thermo-mechanical behavior of fuel rods during reactor operation. Under steady-state operating conditions, periodic stress peaks will appear in the axial direction indicated by the axial cladding strain profile; at the transient, the sudden change in power will cause significant changes in the centerline temperature of the fuel pellet and the contact pressure between pellet and cladding, which can considerably affect the safety of the fuel rod.
Key words:  nuclear fuel    FEM    multiphysics object-oriented simulation environment (MOOSE) platform    numerical simulation
发布日期:  2022-04-07
ZTFLH:  TL352  
基金资助: 中核集团核安全与先进核能技术领创基金
通讯作者:  diyun1979@xjtu.edu.cn   
作者简介:  王兆,2018年6月毕业于合肥工业大学,获得工学学士学位,现为西安交通大学能动学院核能科学与工程硕士研究生,在恽迪教授的指导下进行相关研究。目前主要研究方向为核燃料性能分析。
恽迪,西安交通大学教授,博士研究生导师。2001年本科毕业于清华大学工程物理系,2010年5月获美国伊利诺伊大学香槟分校博士学位。2010年6月—2015年8月担任美国阿贡国家实验室工程师。2015年9月起归国就任于西安交通大学核科学与技术学院,入选2017年国家海外高层次人才引进计划、2017年陕西省百人计划等。主要从事核能相关的研究工作,研究方向涉及核燃料与材料的实验表征、事故容错核燃料开发以及核燃料性能仿真、裂变气体行为分析等,发表SCI论文30余篇。
引用本文:    
王兆, 张新虎, 王召浩, 王冠, 惠永博, 郑伟, 丁阳, 朱丽兵, 邓勇军, 傅先刚, 恽迪, 柳文波. 基于MOOSE平台的UO2燃料性能分析[J]. 材料导报, 2022, 36(7): 21040019-7.
WANG Zhao, ZHANG Xinhu, WANG Zhaohao, WANG Guan, XI Yongbo, ZHENG Wei, DING Yang, ZHU Libing, DENG Yongjun, FU Xiangang, YUN Di, LIU Wenbo. Performance Analysis of UO2 Fuel Based on MOOSE Platform. Materials Reports, 2022, 36(7): 21040019-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21040019  或          http://www.mater-rep.com/CN/Y2022/V36/I7/21040019
1 Yang Z, Su G H, Tian W X, et al. Atomic Energy Science and Technology, 2012, 46(5), 590(in Chinese).
杨震,苏光辉,田文喜,等. 原子能科学技术,2012, 46(5), 590.
2 Tang C B, Jiao Y J, Chen P, et al. In: The Chinese Congress of Theoretical and Applied Mechanics. Shanghai, 2015,pp.169(in Chinese).
唐昌兵,焦拥军,丁淑蓉. 中国理论力学和应用力学代表大会.上海,2015,pp.169.
3 Berna G A, Bohn M P, Rausch W N, et al. FRAPCON-2: A computer code for the calculation of steady state thermal-mechanical behavior of oxide fuel rods, United States, 1981.
4 Qiu B, Wang J. Nuclear power plant design and analysis codes, Woodhead Publishing, UK, 2021,pp.141.
5 Notley M J F. Nuclear Technology, Canada,1979, 44(3), 445.
6 Lassmann K. Journal of Nuclear Materials,1992,188, 295
7 Williamson R L, Hales J D, Novascone S R, et al.Journal of Nuclear Materials, 2012, 423(1-3), 149.
8 Liu R, Prudil R, Zhou W, et al.Progress in Nuclear Energy,2016,91,38.
9 Williamson R L.Optics Communications, 2011, 415(1), 74.
10 Gaston D, Newman C, Hansen G, et al.Nuclear Engineering & Design, 2009, 239(10), 1768.
11 Fink J K, Chasanov M G, Leibowitz L.Journal of Nuclear Materials, 1981, 279(1-2), 1.
12 Lucata P G, Hastings I J, Matzke H.Journal of Nuclear Materials, 1996, 232(2-3), 166.
13 Fink J K.Journal of Nuclear Materials, 1981, 279(1-2), 1.
14 Hagrman D L, Reymann G A. MATPRO-version 11: a handbook of materials properties for use in the analysis of light water reactor fuel rod beha-vior, United States, 1976.
15 Rashid Y. Fuel analysis and licensing code: FALCON MOD01, EPRI Report, 2004.
16 Hayes T A, Kassner M E.Metallurgical & Materials Transactions A, 2006, 37(8), 2389.
17 Hoppe N E. In: International Topical Meeting on LWR Fuel Perfor-mance. Avignon (France), US, 1991.
18 Ross A M, Stoute R L. In: Heat transfer coefficient between UO2 and zircaloy-2. Canada, 1962.
19 Olander D R.International Metals Reviews, DOI: 10.1179/imtr.1977.22.1.258
20 Liu R, Zhou W, Zhou W.Metallurgical and Materials Transactions E, 2016, 18, 27
21 Bradley E R, Cunningham M E, Lanning D D, et al. Office of Scientific & Technical Information Technical Reports, DOI: 10.2172/6401826.
22 Bradley E R, Cunningham M E, Lanning D D, et al.Office of Scientific & Technical Information Technical Reports, DOI: 10.2172/1080052.
23 Geelhood K J, Luscher W G, Beyer C E. Pacific Northwest National Laboratory, DOI: 10.2172/576025.
[1] 孙伟, 张淑婷, 杜开平, 欧阳佩旋, 杨谨赫. 基于有限元法冶金冷轧辊表面替代电镀铬涂层的设计与研究[J]. 材料导报, 2022, 36(7): 21060140-6.
[2] 徐洲, 李晓延, 王小鹏, 王海东. 组合热源模型在焊接模拟中的应用现状与展望[J]. 材料导报, 2022, 36(6): 20070081-6.
[3] 陈徐东, 冯璐, 张锦华, 刘志恒, 董文, 温荣鲲. 不同密度泡沫混凝土梁断裂特性及数值模拟[J]. 材料导报, 2022, 36(4): 20090086-7.
[4] 崔朝兴, 董世运, 胡效东, 闫世兴, 姜浩涌. 激光熔化沉积成形过程数值模拟研究现状[J]. 材料导报, 2022, 36(2): 20040221-6.
[5] 范凌云, 高婧, 李锦峰, 周海俊. 层压型CFRP环带疲劳试验中接触面温度场分析[J]. 材料导报, 2022, 36(1): 20110148-7.
[6] 唐宏波, 解永强, 张红梅, 王宏杰, 胡北辰. 新型五温区碲化汞单晶炉热场结构数值模拟[J]. 材料导报, 2021, 35(z2): 121-126.
[7] 赵金猛, 卢林, 王静荣, 张亮, 吴文恒, 朱冬, 郭帅东, 肖从越. 激光选区熔化Ti6Al4V在介观尺度下的热力学行为与缺陷:数值模拟与实验验证[J]. 材料导报, 2021, 35(z2): 410-416.
[8] 张雷, 庄毅, 李姗姗, 唐毓婧, 李静, 罗欣. 不同工况下车用复合材料板簧的动态疲劳测试研究[J]. 材料导报, 2021, 35(z2): 583-588.
[9] 孙鹏飞, 吕平, 黄微波, 张锐, 方志强, 桑英杰. 喷涂抗爆型聚脲钢筋混凝土板抗爆性能研究[J]. 材料导报, 2021, 35(z2): 642-648.
[10] 汪海波, 于海群, 童水光, 唐宁, 徐永亮. 引晶直径对扩肩形态影响的数值模拟及实验研究[J]. 材料导报, 2021, 35(Z1): 186-188.
[11] 莫东鸣. 高Prandtl数双层流体的热毛细对流数值模拟[J]. 材料导报, 2021, 35(Z1): 302-305.
[12] 薛河, 刘吉, 张顺, 张建龙, 孙裕满, 毕跃起. 基于UMAT焊接接头力学性能连续变化的表征方法及应用[J]. 材料导报, 2021, 35(Z1): 362-366.
[13] 杨康, 李东辉, 郭义林, 马刚, 耿昊, 李群芳, 薛继佳. 某型四座电动飞机复合材料机翼剪切性能试验与分析[J]. 材料导报, 2021, 35(Z1): 485-488.
[14] 孙朝海, 黄炎, 杨康, 姬书得, 岳玉梅. 工装模具对复合材料件固化变形影响的有限元分析[J]. 材料导报, 2021, 35(Z1): 607-612.
[15] 金贺荣, 张钊瑞, 韩民峰, 井士涛, 赵丁选. 表面粗糙度对热轧不锈钢复合板界面质量的影响[J]. 材料导报, 2021, 35(8): 8151-8156.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed