Please wait a minute...
材料导报  2022, Vol. 36 Issue (6): 20070081-6    https://doi.org/10.11896/cldb.20070081
  金属与金属基复合材料 |
组合热源模型在焊接模拟中的应用现状与展望
徐洲1, 李晓延1, 王小鹏1, 王海东2
1 北京工业大学材料科学与工程学院,北京 100124
2 中国核工业二三建设有限公司,北京101300
Application Status and Prospect of Combined Heat Source Model in Welding Simulation
XU Zhou1, LI Xiaoyan1, WANG Xiaopeng1, WANG Haidong2
1 College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
2 China Nuclear Industry 23 Construction Co., Ltd., Beijing 101300, China
下载:  全 文 ( PDF ) ( 4714KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 数值模拟技术能够快速全面地分析焊接过程,在焊接相关研究中应用愈加广泛。焊接过程中,焊接热输入决定着焊接温度、应力等的分布情况,因此焊接热输入的准确表达在模拟准确度中占据着最重要的地位。当前,描述焊接热输入的工作由模拟中代入的热源模型完成,其中包含有多个单一热源的组合热源模型因使用灵活而备受关注。
组合热源模型的灵活性来源于其可以是任意单一热源模型的组合,但这也带来了其构成选择的困难。理论上看,组合热源模型的构成是无穷无尽的,只有根据焊接情形准确确定热源构成,才能体现组合热源模型的优势。此外,使用组合热源模型时增加了热源模型参数,既有单一热源模型中存在的形状参数,还包括决定总的焊接能量在组合热源模型中如何分配的能量系数。这些参数应该如何调整和确定,是使用组合热源模型时必须要面临的问题。
在不同的焊接情形下,研究者们已经使用过面热源+体热源、体热源+体热源等多种多样的构成搭配。使用组合热源模型的目的可以分为两类:(1)使用组合热源模型来模拟单一热源模型难以表达的熔池形状;(2)使用组合热源模型来对应实际焊接热源的不同部分。在这些工作中,组合热源模型的应用提高了模拟的准确度。在调整热源参数的研究中,可采用观察模拟熔池形状、实验测量和模拟经验等方法确定热源的能量分配系数;为了提高热源形状参数调整的效率,在试错法的基础上,数字图像识别技术、自动校准程序等的出现加强了计算机技术的应用。此外,也可以在设计热源模型时考虑减少形状参数的数量。
本文从熔池形状和能量分布两方面介绍了目前使用的组合热源模型的构成,然后综述了热源参数的校准方法,最后总结了组合热源模型的三个应用场景,并指出未来应在模型设计和参数调整中强化计算机技术的应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐洲
李晓延
王小鹏
王海东
关键词:  焊接  数值模拟  组合热源模型  热源模型参数    
Abstract: Numerical simulation technology can quickly and comprehensively analyze the welding process and is widely used in welding related research. In the welding process, the welding heat input determines the distribution of welding temperature and stress, so its accurate expression plays the most important role in the accuracy of simulation. At present, the description of welding heat input is completed by the heat source model substituted in the simulation. The combined heat source model that includes multiple single heat sources is particularly concerned because of its flexible use.
The flexibility of the combined heat source model comes from the fact that it can be a combination of any single heat source model, but this also brings difficulties in composition selection. In theory, the composition of the combined heat source model is infinite, and the advantages of the combined heat source model can be reflected only when the combination heat source model can be accurately determined according to the wel-ding situation. In addition, the parameters of the combined heat source model are added. There are shape parameters that also exist in the single heat source model, and it also includes the energy coefficient of how the total welding energy is distributed in the combined heat source model. How these parameters should be adjusted and determined is a question that must be answered when using the combined heat source model.
In different welding situations, researchers have used surface heat source + body heat source, body heat source + body heat source and other various combinations. They can be divided into two categories according to the purpose of using the combined heat source model :(1) the combined heat source model is used to simulate the shape of the molten pool that is difficult to express by the single heat source model; (2) the combined heat source model is used to correspond to different parts of the actual welding heat source. In these works, the application of the combined heat source model improves the accuracy of simulation. In the study of heat source parameter adjustment, the energy distribution coefficient of heat source can be determined by observing the shape of simulated molten pool, experimental measurement and simulation experience. In order to improve the efficiency of heat source shape parameter adjustment, on the basis of trial-and-error method, the emergence of digital image reco-gnition technology and automatic calibration program has strengthened the application of computer technology. In addition, it is also possible to consider reducing the number of shape parameters when designing the heat source model.
This paper introduces the composition of the combined heat source model from the shape of the molten pool and the distribution of energy, then summarizes the calibration method of the heat source parameters, and finally, summarizes three application scenarios of the combined heat source model, and points out that the application of computer technology should be strengthened in the model design and parameter adjustment in the future.
Key words:  welding    numerical simulation    combined heat source model    heat source model parameters
出版日期:  2022-03-25      发布日期:  2022-03-21
ZTFLH:  TG402  
通讯作者:  xyli@bjut.edu.cn   
作者简介:  徐洲,北京工业大学,硕士研究生。主要从事焊接残余应力测试与预测等方面的研究工作。
李晓延,北京工业大学,教授。1992年毕业于哈尔滨工业大学,材料学博士学位。1998年起任北京工业大学教授,2000年起任博士研究生导师。主要从事材料无损检测与评价、微电子组装材料与技术、材料工程信息技术等方面的研究工作。在国内外重要期刊发表论文100多篇。
引用本文:    
徐洲, 李晓延, 王小鹏, 王海东. 组合热源模型在焊接模拟中的应用现状与展望[J]. 材料导报, 2022, 36(6): 20070081-6.
XU Zhou, LI Xiaoyan, WANG Xiaopeng, WANG Haidong. Application Status and Prospect of Combined Heat Source Model in Welding Simulation. Materials Reports, 2022, 36(6): 20070081-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070081  或          http://www.mater-rep.com/CN/Y2022/V36/I6/20070081
1 She L B, Wei Y H, Wang S G, et al. Materials Research Express, 2018, 6(2), 26567.
2 Wang X P, Li X Y, Wu Q, et al. Materials Reports B:Research Papers, 2020, 34(10), 20081 (in Chinese).
王小鹏,李晓延,吴奇,等.材料导报:研究篇, 2020, 34(10), 20081.
3 Huang B S, Chen Q, Yang J, et al. Transactions of the China Welding Institution, 2019, 40(2), 138 (in Chinese).
黄本生,陈权,杨江,等.焊接学报, 2019, 40(2), 138.
4 Wu C S.Welding thermal process and molten pool dynamic, Mechanical Industry Press, China, 2007, pp.16 (in Chinese).
武传松.焊接热过程与熔池形态, 机械工业出版社, 2007, pp.16.
5 Zheng Z T, Lyu H M, Zhang K, et al. Welding, 2008, 418(4), 3 (in Chinese).
郑振太,吕会敏,张凯,等.焊接, 2008, 418(4), 3.
6 Huang Y F, Luo Z, Wang Z M, et al. Transactions of the China Welding Institution, 2017, 38(11), 104 (in Chinese).
黄逸飞,罗震,王证茗,等.焊接学报, 2017, 38(11), 104.
7 Mo C L, Qian B N, Guo X M, et al.Transactions of the China Welding Institution, 2001, 22(3), 93 (in Chinese).
莫春立,钱百年,国旭明,等.焊接学报, 2001, 22(3), 93.
8 Zhang Q Q. Study on numerical simulation of temperature field and improvement plan in laser deep welding aluminum alloy.Master's Thesis, Nanchang University, China, 2017 (in Chinese).
张奇奇. 铝合金激光深熔焊温度场数值模拟及改善方案研究.硕士学位论文, 南昌大学, 2017.
9 Wang J Q. Research on regulation method of welding distortion and resi-dual stress for large shell structure.Ph.D. Thesis, Beijing Jiaotong University, China, 2016 (in Chinese).
王军强. 大型壳体结构焊接变形及残余应力调控方法研究.博士学位论文, 北京交通大学, 2016.
10 Gu J C, Tong L G, Li L, et al.Materials Reports A:Review Papers, 2014, 28(1), 143 (in Chinese).
谷京晨,童莉葛,黎磊,等.材料导报:综述篇, 2014, 28(1), 143.
11 Zhang Y H.Welding mechanics and the principle of structure integrity, Beihang University Press, China, 2007,pp.80 (in Chinese).
张彦华.焊接力学与结构完整性原理, 北京航空航天大学出版社, 2007, pp.80.
12 Gai D Y, Zhu Y Z, Li Q F, et al. Transactions of the China Welding Institution, 2009, 30(5), 61 (in Chinese).
盖登宇,褚元召,李庆芬,等.焊接学报, 2009, 30(5), 61.
13 Chukkan J R, Vasudevan M, Muthukumaran S, et al.Journal of Materials Processing Technology, 2015, 219, 48.
14 Li Z J. Research of temperature and residual stress fields of weld joint based on simulation with SYSWELD. Master's Thesis, Beijing Jiaotong University, China, 2010 (in Chinese).
李振江. 基于SYSWELD的焊接接头温度场和残余应力场研究.硕士学位论文, 北京交通大学, 2010.
15 Dai W H, Song Y T, Xin J J, et al. Fusion Engineering and Design, 2020, 154,1.
16 Wang Q B. Research on flow field of invar steel molten pool by laser-MIG hybrid welding. Master's Thesis, Nanjing University of Aeronautics and Astronautics, China, 2016 (in Chinese).
汪奇兵. Invar钢激光-MIG复合焊接熔池流场形态研究.硕士学位论文, 南京航空航天大学, 2016.
17 Yang Y. Microstructure and properties of laser MIG hybrid welding and MIG welding joint of 6009 aluminum alloy and numerical simulation of temperature field. Master's Thesis, Southwest Petroleum University, China, 2016 (in Chinese).
杨阳. 6009铝合金激光-MIG复合焊与MIG焊接头组织性能研究及温度场数值模拟.硕士学位论文, 西南石油大学, 2016.
18 Xia P Y. Numerical simulation of temperature and stress field in fibre laser keyhole welding orienting prediction of weld shape.Master's Thesis, Huazhong University of Science and Technology, China, 2012 (in Chinese).
夏佩云. 面向焊缝形貌预测的光纤激光深熔焊温度场及应力场数值模拟.硕士学位论文,华中科技大学, 2012.
19 Tian W T. The research of experiment and numerical simulation for fiber laser welding 304 austenitic stainless steel thin sheet.Master's Thesis, China University of Mining and Technology, China, 2016 (in Chinese).
田文腾. 304奥氏体不锈钢薄板光纤激光焊接试验及数值模拟研究.硕士学位论文, 中国矿业大学, 2016.
20 Liu J P. Research on the properties and deformation control of thick 2A12 aluminum alloy electron beam welded joints.Master's Thesis, Harbin Institute of Technology, China, 2018 (in Chinese).
柳峻鹏. 2A12厚板铝合金电子束焊接接头性能及变形控制研究.硕士学位论文, 哈尔滨工业大学, 2018.
21 Shen X L, Gao, K, Dong S J. The International Journal of Advanced Manufacturing Technology, 2020, 107(9), 3956.
22 Zeng Z, Wang L J, Wang Y, et al. Computational Materials Science, 2009, 44(4), 1153.
23 Li P L. Study on the simulation of multi-wire submerged arc welding heat source model and appearance of weld.Master's Thesis, Shanghai Jiao Tong University, China, 2012 (in Chinese).
李培麟. 多丝埋弧焊热源模型与焊缝成形的模拟研究.硕士学位论文, 上海交通大学, 2012.
24 Qin G, Su Y, Meng X, et al.International Journal of Advanced Manufacturing Technology, 2015, 78(9), 1917.
25 Chen S, Wu Y F, Li Y, et al. Optics and Laser Technology, 2020, 132, 5.
26 Chen S Y, Liu Z M, Zhao X C, et al. International Journal of Heat & Mass Transfer, 2019, 143, 3.
27 Gou J C, Mi N, Kou Y Z, et al.Journal of Longdong University, 2017, 28(3), 28 (in Chinese).
郭晋昌,弥宁,寇元哲,等.陇东学院学报, 2017, 28(3), 28.
28 Zhou S J, Bu H C, Gao Q Y, et al. Modern Physics Letters B, 2019, 33(32), 5.
29 Chandrasekhar N, Ragavendran M, Vasudevan M. Journal of the Brazi-lian Society of Mechanical Sciences and Engineering, 2020, 42(10), 4.
30 Wang X P. Research on Ar gas shielded scan laser-CMT arc hybrid wel-ding technology of stainless steel.Master's Thesis, China Academy of Machinery Science and Technology, China, 2012 (in Chinese).
王小朋. 不锈钢纯Ar保护激光扫描-CMT复合焊接研究.硕士学位论文, 机械科学研究总院, 2012.
31 Saternus Z, Piekarska W, Kubiak M, et al.Procedia Engineering, 2016, 136, 95.
32 Zhang D, Wei Y, Zhan X, et al.International Journal of Numerical Met-hods for Heat & Fluid Flow, 2018, 28(9), 1974.
33 Gu Y, Li Y D, Yong Y, et al.Springer Berlin Heidelberg, 2019, 63(2), 365.
34 Zhu Z M, Fu P P, Yang Z Y, et al. Chinese Journal of Engineering, 2018, 40(4), 389 (in Chinese).
朱志明,符平坡,杨中宇,等.工程科学学报, 2018, 40(4), 389.
35 Gou G F, Wang Y, Han T, et al. Pressure Vessel Technology, 2013, 30(1), 6 (in Chinese).
郭广飞,王勇,韩涛,等.压力容器, 2013, 30(1), 6.
36 Sun G F, Wang Z D, Lu Y, et al. Journal of Manufacturing Processes, 2018, 34, 110.
37 Han X H, Chen J, Kan Y, et al. Chinese Journal of Lasers, 2017, 44(5), 89 (in Chinese).
韩晓辉,陈静,阚盈,等.中国激光, 2017, 44(5), 89.
38 Dupont J N, Marder A R.Welding Journal, 1995, 74(12), 406.
39 Wang Y, Tsai H L.International Journal of Heat & Mass Transfer, 2001, 44(11), 2067.
40 Wang F, Hou W K, Hu S J, et al. Journal of Physics D Applied Physics, 2003, 36(9), 1142.
41 Zheng Z, Shan P, Hu S, et al.China Welding (English Edition), 2006, 15(4), 55.
42 Lu F, Wang H P, Murphy A B, et al.International Journal of Heat & Mass Transfer, 2014, 68(Jan.), 215.
43 Wang L Y. Numerical analysis of fluid flow during pulse MIG brazing-fusion welding of aluminum alloy to steel. Master's Thesis, Shandong University, China, 2016 (in Chinese).
王丽媛. 铝合金/钢脉冲MIG电弧熔—钎焊熔池流场数值分析. 硕士学位论文, 山东大学, 2016.
44 Sun Z, Han Y, Du M, et al.Journal of Manufacturing Processes, 2018, 34(AUG), 688.
45 Zhang X H, Chen J Q, Chen H, et al.Transactions of the China Welding Institution, 2018, 39(1), 17 (in Chinese).
张晓鸿,陈静青,陈辉.焊接学报, 2018, 39(1), 17.
46 Jiang P Y. Study on the residual stress of 2219 aluminum alloy TIG and FSW welding. Master's Thesis, Harbin Institute of Technology, China, 2017 (in Chinese).
姜丕洋. 2219铝合金TIG焊及FSW焊残余应力研究.硕士学位论文, 哈尔滨工业大学, 2017.
47 Chen Y, Han J M,Li Z Q, et al. Inverse Problems in Science and Engineering, 2014, 22(6), 1009.
[1] 杨宇龙, 贾潇, 朱伏先, 王平. 大线能量焊接用钢粗晶热影响区针状铁素体形成过程控制技术的研究进展[J]. 材料导报, 2022, 36(5): 20060056-11.
[2] 何国宁, 蒋波, 何博, 胡学文, 刘雅政. 集装箱用高强度耐候钢的开发及研究现状[J]. 材料导报, 2022, 36(4): 20090318-9.
[3] 杨秀烨, 方金祥, 何鹏. 自动焊接传感技术研究现状及发展趋势[J]. 材料导报, 2022, 36(3): 20090224-8.
[4] 崔朝兴, 董世运, 胡效东, 闫世兴, 姜浩涌. 激光熔化沉积成形过程数值模拟研究现状[J]. 材料导报, 2022, 36(2): 20040221-6.
[5] 周桂娟, 童志, 陈晓华, 郑文跃, 熊道英, 王艳林. X80管线钢焊接与焊缝开裂影响因素研究进展[J]. 材料导报, 2022, 36(2): 21100169-9.
[6] 栗卓新, 田振, 李红, 王义朋, 曹健, 周辰. 纳米陶瓷颗粒对铝合金焊缝强度和微观组织影响的研究进展[J]. 材料导报, 2022, 36(1): 20090070-8.
[7] 范凌云, 高婧, 李锦峰, 周海俊. 层压型CFRP环带疲劳试验中接触面温度场分析[J]. 材料导报, 2022, 36(1): 20110148-7.
[8] 唐宏波, 解永强, 张红梅, 王宏杰, 胡北辰. 新型五温区碲化汞单晶炉热场结构数值模拟[J]. 材料导报, 2021, 35(z2): 121-126.
[9] 刘自刚, 周晓静, 朱婷婷, 陈亮, 陈飞, 许强. A-TIG焊接方法研究现状及展望[J]. 材料导报, 2021, 35(z2): 353-357.
[10] 刘甲, 徐家磊, 马照伟, 雷小伟, 高奇, 崔永杰. 钛合金等离子和MIG复合焊接技术研究[J]. 材料导报, 2021, 35(z2): 358-360.
[11] 赵金猛, 卢林, 王静荣, 张亮, 吴文恒, 朱冬, 郭帅东, 肖从越. 激光选区熔化Ti6Al4V在介观尺度下的热力学行为与缺陷:数值模拟与实验验证[J]. 材料导报, 2021, 35(z2): 410-416.
[12] 孙鹏飞, 吕平, 黄微波, 张锐, 方志强, 桑英杰. 喷涂抗爆型聚脲钢筋混凝土板抗爆性能研究[J]. 材料导报, 2021, 35(z2): 642-648.
[13] 汪海波, 于海群, 童水光, 唐宁, 徐永亮. 引晶直径对扩肩形态影响的数值模拟及实验研究[J]. 材料导报, 2021, 35(Z1): 186-188.
[14] 莫东鸣. 高Prandtl数双层流体的热毛细对流数值模拟[J]. 材料导报, 2021, 35(Z1): 302-305.
[15] 薛河, 刘吉, 张顺, 张建龙, 孙裕满, 毕跃起. 基于UMAT焊接接头力学性能连续变化的表征方法及应用[J]. 材料导报, 2021, 35(Z1): 362-366.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed