Please wait a minute...
材料导报  2022, Vol. 36 Issue (6): 20060149-7    https://doi.org/10.11896/cldb.20060149
  金属与金属基复合材料 |
定向凝固镁合金的研究进展及应用前景
贾红敏, 常剑秀
西安石油大学材料科学与工程学院,西安 710065
Research Progress and Application Prospect of Directionally Solidified Mg Alloys
JIA Hongmin, CHANG Jianxiu
School of Materials Science and Engineering, Xi'an Shiyou University, Xi'an 710065, China
下载:  全 文 ( PDF ) ( 14495KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 镁及镁合金在轻量化、节能减排和减少环境污染等方面具有极大的使用优势,近年来在汽车、电子、航空航天等领域得到了日益广泛的应用。但强度低、变形加工能力差、化学活性大、抗腐蚀性能差等问题严重制约了镁及镁合金的使用。因此,开发高性能的镁合金材料是当前研究的重点和难点。
现阶段,添加合金元素、开展热处理、开发新型镁基复合材料等方法被用于提高镁合金力学性能及加工变形能力,但考虑合金凝固特性与性能关系的研究较少。科学合理地解释镁合金凝固特性会为合金的广泛应用提供理论依据,合理地控制合金的凝固路径对合金设计和制备具有重要的科学价值及工程意义。
定向凝固技术能够通过调节凝固参数定制凝固组织,便于获得准确的成分-组织-工艺-性能之间的对应关系,是研究合金凝固过程的重要方法。通过定向凝固技术能够有效地控制镁合金的凝固组织及晶粒生长取向,从而改善合金性能。因此,近年来国内外学者针对定向凝固镁合金开展了大量的实验研究和理论分析,在镁合金定向凝固组织演变、生长取向及力学性能等方面获得了一些规律性结果。
本文在开展实验研究的基础上,总结了定向凝固镁合金的研究进展,分析了现有研究中存在的问题,并展望了定向凝固镁合金的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
贾红敏
常剑秀
关键词:  定向凝固  镁合金  组织演变  生长取向  性能    
Abstract: Mg and its alloys show great advantages in lightweight, energy saving and emission reduction for their low density and high specific strength, and attract increasing attention in automobile, electronics, aerospace and other fields. However, the problems such as low strength, poor deformability, high chemical activity and poor corrosion resistance still limit the widespread applications of Mg and its alloys. Thus, the development of Mg alloys with high-performance is still the focus of recent studies.
Various methods have been explored to improve the mechanical properties and deformability of Mg alloys, such as alloying, heat treatment and development of new Mg-based composites, but few researches are focused on the relationship between the solidification characteristics and the properties of Mg alloys. Exploration into the solidification characteristic and control of solidification path not only have scientific significance but also can provide a theoretical basis for alloy design and fabrication. Both are beneficial to the extensive application of Mg alloys.
Designed microstructure can be obtained by directional solidification technology through adjusting the solidification parameters, which makes it convenient to obtain the relationships among composition, microstructure, processing parameter and performance. In recent years, lots of experimental and theoretical studies have been carried out and shed light on the knowledge of microstructural evolution, growth orientation and mechanical properties of directionally solidified Mg alloys.
In this work, the development of directionally solidified Mg alloys, including the newest research progress and the existing problems are summarized, and their potential application is prospected.
Key words:  directional solidification    Mg alloys    microstructure evolution    growth direction    properties
出版日期:  2022-03-25      发布日期:  2022-03-21
ZTFLH:  TG292  
基金资助: 陕西省自然科学基础研究计划(2020JQ-773)
通讯作者:  hmjia12s@alum.imr.ac.cn   
作者简介:  贾红敏,西安石油大学材料科学与工程学院讲师。2012年7月本科毕业于中北大学材料科学与工程学院,2018年6月于中国科学院大学(中国科学院金属研究所)取得博士学位,同年7月进入西安石油大学工作。主要从事轻量化结构材料、金属的腐蚀与防护、生物医用金属材料等方面的研究,近五年在国内外重要学术期刊上发表论文13篇,包括Corrosion Science,Materials Science & Engineering C,Materials Science & Engineering A等。
引用本文:    
贾红敏, 常剑秀. 定向凝固镁合金的研究进展及应用前景[J]. 材料导报, 2022, 36(6): 20060149-7.
JIA Hongmin, CHANG Jianxiu. Research Progress and Application Prospect of Directionally Solidified Mg Alloys. Materials Reports, 2022, 36(6): 20060149-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20060149  或          http://www.mater-rep.com/CN/Y2022/V36/I6/20060149
1 Mordike B L, Ebert T. Materials Science & Engineering A, 2001, 302,37.
2 Mao L, Shen L, Chen J H, et al.Scientific Reports, 2017, 7 (1),1.
3 Zheng Y F, Gu X N, Witte F.Materials Science & Engineering R, 2014, 77,1.
4 Hu H Q. Principle of metal solidification (2nd edition), China Machine Press, China, 2000, pp.52 (in Chinese).
胡汉起. 金属凝固原理(第2版), 机械工业出版社, 2000, pp. 52.
5 Peng D L, Xing D W, An G Y. Journal of Harbin Institute of Technology, 1999, 31 (1),10 (in Chinese).
彭德林,邢大伟,安阁英.哈尔滨工业大学学报, 1999, 31 (1),10.
6 Chen X X, Li Q S, Fan Y Y. China Foundry Machinery & Technology, 2009(2),19 (in Chinese).
陈孝先,李秋书,范艳艳.中国铸造装备与技术, 2009(2),19.
7 Zhao Y M, Li Q S, Mo L J, et al. China Foundry Machinery & Technology, 2010 (4),12(in Chinese).
赵彦民,李秋书,莫漓江,等.中国铸造装备与技术, 2010 (4),12.
8 Zhao Y M, Zhang J Q, Xiang W, et al. Hot Working Technology, 2012, 41 (13),75 (in Chinese).
赵彦民,张家奇,向伟,等.热加工工艺, 2012, 41 (13),75.
9 Tang S Q, Zhou J X, Tian C W, et al. Shandong Science, 2011, 24 (4),18 (in Chinese).
唐守秋,周吉学,田长文,等.山东科技, 2011, 24 (4),18.
10 Mirković D, Schmid-Fetzer R.Metallurgical and Materials Transactions A, 2009, 40 (4),958.
11 Mirković D, Schmid-Fetzer R. Metallurgical and Materials Transactions A, 2009, 40 (4),974.
12 Paliwal M, Jung I H. Acta Materialia, 2013, 61 (13),4848.
13 Zhang C, Ma D, Wu K S, et al.Intermetallics, 2007, 15 (10),1395.
14 Zheng X, Luo A A, Zhang C, et al. Metallurgical and Materials Transactions A, 2012, 43 (9),3239.
15 Wang J A, Wang J H, Song Z X. Rare Metal Materials and Engineering, 2017, 46 (1),0012.
16 Luo S, Yang G, Liu S, et al. Materials Science & Engineering A, 2016, 662,241.
17 Yang G Y, Luo S F, Liu S J, et al. Journal of Alloys and Compounds, 2017, 725,145.
18 Hu Y K, Li Q S, Guo H L, et al. Journal of Taiyuan University of Science and Technology, 2018, 39 (1),48 (in Chinese).
胡延昆,李秋书,郭会玲,等. 太原科技大学学报, 2018, 39 (1),48.
19 Yang C B, Luo N, Zhang X L, et al. Rare Metal Materials and Enginee-ring, 2017, 46 (10),3028(in Chinese).
杨初斌,罗宁,张小联,等. 稀有金属材料与工程, 2017, 46 (10),3028.
20 Liu S J. Researches on the solidification characteristic and mechanical properties of Mg-Zn-Gd based magnesium alloy. Ph.D. Thesis, Northwes-tern Polytechnical University, China, 2016 (in Chinese).
刘少军. Mg-Zn-Gd系镁合金的凝固特性及其力学性能研究. 博士学位论文, 西北工业大学, 2016.
21 Zhu J J, Liu L G. Chinese Journal of Vacuum Science and Technology, 2019, 39 (7),594 (in Chinese).
朱镜瑾,刘灵歌. 真空科学与技术学报, 2019, 39 (7),594.
22 Jia H M, Feng X H, Yang Y S. Materials Science Forum, 2015, 816 ,411.
23 Jia H M, Feng X H, Yang Y S. Journal of Materials Science & Technology, 2018, 7,229.
24 Jia H M, Feng X H, Yang Y S. Acta Metallugical Sinica (English Letters), 2017, 30 (12), 1185.
25 Katgerman L. Materials Today, 2011, 14 (10),502.
26 Pettersen K, Lohne O, Ryum N. Metallurgical Transactions A, 1990, 21 (1),221.
27 Pettersen K, Ryum N. Metallurgical Transactions A, 1989, 20 (5),847.
28 Shuai S S, Guo E Y, Wang M Y, et al. Metallurgical and Materials Transactions A, 2016, 47 (9),4368.
29 Wang M Y, Williams J J, Jiang L,et al. Scripta Materialia, 2011, 65 (10),855.
30 Wang M Y, Xu Y J, Jing T, et al. Scripta Materialia, 2012, 67,629.
31 Yang Y, Yang G Y, Luo S F, et al. Acta Metallurgica Sinica, 2019, 55 (2),34 (in Chinese).
杨燕, 杨光昱, 罗时峰, 等. 金属学报, 2019, 55 (2),34.
32 Hu Y K, Li Q S, Li J W, et al. Heavy Casting and Forging, 2017 (6),6(in Chinese).
胡延昆, 李秋书, 李建文, 等. 大型铸锻件, 2017 (6),6.
33 Mabuchi M, Kobata M, Chino Y, et al. Materials Transactions, 2003, 44 (4),436.
34 Wang J H, Yuan G Y, Liu S J, et al. Transactions of Nonferrous Metals Society of China, 2016, 26 (5),1294.
35 Tane M, Nagai Y, Kimizuka H, et al. Acta Materialia, 2013, 61,6338.
36 Xie H B, Lin X P, Yin C, et al. The Chinese Journal of Nonferrous Metals, 2017, 27 (9),1862 (in Chinese).
谢宏斌,林小娉,印策,等. 中国有色金属学报, 2017, 27 (9),1862.
37 Zhang X L, Li L. Hot Working Technology, 2016, 45 (3),77 (in Chinese).
张晓林,李凛. 热加工工艺, 2016, 45 (3),77.
38 Zou M Q, Huang C Q, Xia W J, et al. Casting, 2006, 55 (9),890 (in Chinese).
邹敏强,黄长清,夏伟军,等.铸造, 2006, 55 (9),890.
39 Xiao L. Hot Working Technology, 2017, 46(15),112 (in Chinese).
肖璐.热加工工艺, 2017, 46(15),112.
40 Lin X P, Zhao T B, Dong Y, et al. Materials Science & Engineering A, 2017, 700,681.
41 Sun H, Lin X P, Zhou B, et al. Acta Metallurgica Sinica, 2020, 56 (3),340(in Chinese).
孙衡, 林小娉, 周兵, 等. 金属学报, 2020, 56 (3),340.
42 Xiao L, Pan F S. Journal of Materials Science and Engineering, 2020, 38 (1),98 (in Chinese).
肖璐, 潘复生. 材料科学与工程学报, 2020, 38 (1),98.
43 Muto Y, Shiraiwa T, Enoki M. Materials Science & Engineering A, 2017, 689,157.
44 Jia H M, Feng X H, Yang Y S. Corrosion Science, 2017, 120,75.
45 Jia H M, Feng X H, Yang Y S. Materials Science & Engineering C, 2019, 106, 110013.
46 Yang H. Mechanical property and twinning behavior of Mg and Mg-Sn alloy single crystal in directional solidification. Master's Thesis,Chongqing University, China, 2016 (in Chinese).
杨鸿. 定向凝固下镁及镁锡合金单晶的力学性能和孪生行为研究. 硕士学位论文, 重庆大学, 2016.
47 Jia H M, Feng X H, Yang Y S. Materials Science & Engineering A, 2019, 762, 138104.
48 Hu Y K, Li Q S, Li J W, et al. Heavy Casting and Forging, 2017, 3 (12),41 (in Chinese).
胡延昆,李秋书,李建文,等. 大型铸锻件, 2017, 3 (12),41.
49 Xu Z C, Feng Z X, Shi Q N, et al. Materials Reports B: Research Papers, 2018, 32 (6),865 (in Chinese).
徐志超,冯中学,史庆南,等. 材料导报:研究篇, 2018, 32 (6),865.
50 Ma Y X, Li Q S, Wang J H, et al. Foundary Technology, 2018, 39 (3),558(in Chinese).
马雁翔,李秋书,王金红,等. 铸造技术, 2018, 39 (3),558.
51 Agarwal S, Curtin J, Duffy B, et al. Materials Science & Engineering C, 2016, 68,948.
52 Hyung-Seop H, Sergio L, Indong J, et al. Material Today, 2019, 23,57.
53 Zhou J, Feng Z Y, Zhang J L, et al. Journal of Chinese Soceity for Corrosion and Protection, 2014, 34 (2),185 (in Chinese).
周京,冯芝勇,张金玲,等.中国腐蚀与防护学报, 2014, 34 (2), 185.
54 Kaviani M, Ebrahimi G R, Ezatpour H R. Materials Chemistry and Physics, 2019, 234, 245.
55 Yan J F, Heckman N M, Velasco L, et al. Scientific Reports, 2016, 6, 26870.
[1] 谢鸿翔, 项厚政, 马瑞奇, 陈雨雪, 刘国忠, 姚思远, 冒爱琴. 高熵陶瓷材料的研究进展[J]. 材料导报, 2022, 36(6): 20070201-8.
[2] 周维, 樊坤阳, 黄淙, 刘子京, 万维财, 贡太敏. 烧结温度对团聚高温快速烧结WC-10Co-4Cr粉末及其HVOF涂层性能的影响[J]. 材料导报, 2022, 36(6): 20120041-6.
[3] 杨浩, 李尧, 郝建民. 激光增材制造Inconel 718高温合金的研究进展[J]. 材料导报, 2022, 36(6): 20080021-10.
[4] 王付胜, 王汉森, 何鹏, 胡隆伟, 陈亚军. 磁控溅射和电镀方法制备纯银镀层耐蚀性能分析[J]. 材料导报, 2022, 36(6): 20120254-6.
[5] 秦芳诚, 亓海全, 孟征兵, 陈平, 黄玉鸿. 海洋工程高抗蚀筋材研究进展[J]. 材料导报, 2022, 36(6): 20060137-7.
[6] 侯腾跃, 孙炎辉, 孙舒鹏, 肖瑛, 郑雁公, 王兢, 杜海英, 吴隽新. 机器学习在材料结构与性能预测中的应用综述[J]. 材料导报, 2022, 36(6): 20080205-12.
[7] 宋灵婷, 肖文波, 黄乐, 吴华明. 三维、二维卤化物钙钛矿材料性能及应用综述[J]. 材料导报, 2022, 36(5): 20070246-7.
[8] 李亮, 栾贻恒, 吴俊, 杜修力, 吴文杰. 钢网片-聚乙烯纤维增强水泥基复合材料中低速动态拉伸性能试验研究[J]. 材料导报, 2022, 36(5): 20120031-6.
[9] 褚洪岩, 高李, 秦健健, 汤金辉, 蒋金洋. 磺化石墨烯对再生砂超高性能混凝土力学性能和耐久性能的影响[J]. 材料导报, 2022, 36(5): 20090345-5.
[10] 马俊军, 蔺鹏臻. 基于细观尺度的UHPC氯离子扩散预测CA模型[J]. 材料导报, 2022, 36(5): 21040188-6.
[11] 张光睿, 姚特, 龚沛, 乔禹, 王婷婷, 梁雨萍, 郝宏波. (Fe81.5Co1.5Ga17)100-xTbx合金结构及其磁性能[J]. 材料导报, 2022, 36(5): 20120138-5.
[12] 李威霖, 王佳, 焦剑. Fe3O4-MWCNTs杂化纳米纸对纤维增强复合材料吸波性能的影响[J]. 材料导报, 2022, 36(5): 20110094-6.
[13] 张显, 蔡明, 孙宝忠. 植物纤维增强复合材料的湿热老化研究进展[J]. 材料导报, 2022, 36(5): 20100169-11.
[14] 张晓光, 时海军, 刘杰, 党漭, 何燕. 碳纳米管对膨胀阻燃天然橡胶的燃烧和力学性能的影响[J]. 材料导报, 2022, 36(5): 21010074-6.
[15] 庞华, 辛勇, 岳慧芳, 彭航, 蒲曾坪, 邱玺, 孙志鹏, 刘仕超. 大晶粒UO2燃料芯块性能研究进展[J]. 材料导报, 2022, 36(4): 22010197-8.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed