Please wait a minute...
材料导报  2022, Vol. 36 Issue (5): 21010074-6    https://doi.org/10.11896/cldb.21010074
  高分子与聚合物基复合材料 |
碳纳米管对膨胀阻燃天然橡胶的燃烧和力学性能的影响
张晓光, 时海军, 刘杰, 党漭, 何燕
青岛科技大学机电工程学院,山东 青岛 266061
Effect of Carbon Nanotubes on Flammability and Mechanical Property of Intumescent Flame Retardant Natural Rubber
ZHANG Xiaoguang, SHI Haijun, LIU Jie, DANG Mang, HE Yan
College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, Shandong, China
下载:  全 文 ( PDF ) ( 6103KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用机械共混法分别制备了由多壁碳纳米管(MCNTs)、羧基改性多壁碳纳米管(CCNTs)与膨胀型阻燃剂协效的膨胀阻燃天然橡胶复合材料。其中膨胀型阻燃剂由聚磷酸铵、三聚氰胺和玉米淀粉以质量比3∶1∶1的比例组成。通过氧指数测试(LOI)、垂直燃烧测试(UL-94)、锥形量热仪实验(CCT)、热重-红外光谱实验(TG-IR)、扫描电镜(SEM)和拉伸实验等测试手段,研究了膨胀阻燃天然橡胶复合材料的燃烧性能、热稳定性和力学性能。研究结果表明,NR3/2MCNTs的热释放峰值和总产烟量相比于NR3分别下降了9.6%和17.9%。多壁碳纳米管有助于降低膨胀阻燃天然橡胶复合材料的热释放峰值和产烟量,但是会使燃烧时间提前。热重实验结果表明,NR3/2CCNTs的残碳量比NR3提高了12.7%。羧基改性的碳纳米管可以促进膨胀阻燃天然橡胶复合材料的残碳量增加。此外,加入MCNTs和CCNTs后,提高了膨胀阻燃天然橡胶复合材料的拉伸应力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张晓光
时海军
刘杰
党漭
何燕
关键词:  天然橡胶  碳纳米管  燃烧性能  热稳定性  力学性能    
Abstract: The intumescent flame retardant natural rubber (NR) composites based on multi-walled carbon nanotubes (MCNTs), carboxyl modified multi-walled carbon nanotubes (CCNTs) and intumescent flame retardants were prepared by mechanical blending, respectively. The intumescent flame retardant is composed of ammonium polyphosphate, melamine and corn starch in a weight ratio of 3∶1∶1. The flammability, thermal stability and mechanical properties of intumescent flame retardant NR composites were studied by limiting oxygen index test, UL-94 test, cone calorimeter test, thermogravimetric-Fourier transform infrared spectroscopy, scanning electron microscopy and tensile test. The results show that compared with NR3, the peak of heat release rate and total smoke production of NR3/2MCNTs decreased by 9.6% and 17.9%, respectively. The peak of heat release rate and total smoke production of intumescent flame retardant NR composites were reduced by adding MCNTs, but the combustion time was advanced. The char residue of NR3/2CCNTs is 12.7% higher than that of NR3. Carboxyl-modified carbon nanotubes can promote the increase of char residues of intumescent flame retardant NR composites. In addition, the tensile stress of intumescent flame retardant NR composites was improved by adding MCNTs and CCNTs.
Key words:  natural rubber    carbon nanotubes    flammability    thermal stability    mechanical property
出版日期:  2022-03-10      发布日期:  2022-03-08
ZTFLH:  TQ314  
基金资助: 国家自然科学基金(51676103)
通讯作者:  heyan@qust.edu.cn   
作者简介:  张晓光,副教授,硕士研究生导师,主要从事工程热物理与材料学交叉领域教学科研及社会服务工作。授权国家发明专利5件;在学术期刊上发表论文30余篇。
何燕,教授,博士研究生导师,享受“国务院特殊津贴”、泰山学者特聘专家、山东省教学名师。专注于工程热物理与材料、化工等交叉领域,围绕国家重大需求和经济主战场开展研究工作。以第一完成人获科研奖励10项,主编著作2部,发表论文100余篇。
引用本文:    
张晓光, 时海军, 刘杰, 党漭, 何燕. 碳纳米管对膨胀阻燃天然橡胶的燃烧和力学性能的影响[J]. 材料导报, 2022, 36(5): 21010074-6.
ZHANG Xiaoguang, SHI Haijun, LIU Jie, DANG Mang, HE Yan. Effect of Carbon Nanotubes on Flammability and Mechanical Property of Intumescent Flame Retardant Natural Rubber. Materials Reports, 2022, 36(5): 21010074-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21010074  或          http://www.mater-rep.com/CN/Y2022/V36/I5/21010074
1 Gao J S, He Y, Xu J, et al. Chinese Journal of Materials Research, 2017, 31(10),758(in Chinese).
高江姗, 何燕, 徐瑾,等.材料研究学报, 2017, 31(10), 758.
2 Beyer G. Fire and Materials, 2002, 26(6), 291.
3 Ding Y H, Yang J H, Guo L. Engineering Plastics Application, 2019, 47(3), 1(in Chinese).
丁永红, 杨景红, 郭亮.工程塑料应用, 2019, 47(3), 1.
4 Xu X Y, Xie M, Yu H, et al.China Plastics, 2019, 33(5), 43(in Chinese).
徐新宇, 谢淼, 于浩,等. 中国塑料, 2019, 33(5), 43.
5 Yue J F, Liu C H, Zhou C, et al. Polymer, 2020, 189,122197
6 Zhang Y, Hu Y X, Wang J L, et al. Composites Part A: Applied Science and Manufacturing, 2018, 115, 215.
7 Xu Z S, Deng N, Yan L, et al. Polymers for Advanced Technologies, 2018, 29(12), 3002.
8 Yang W, Tawiah B, Yu C, et al. Composites Part A: Applied Science and Manufacturing, 2018, 110, 227.
9 Zhang Q J, Zhan J, Zhou K Q, et al. Polymer Degradation and Stability, 2015, 115, 38.
10 Hu Y D, Xu P, Gui H G, et al. Composites Part A: Applied Science and Manufacturing, 2015, 77, 147.
11 Lee S, Kim H M, Seong D G, et al. Carbon, 2019, 143, 650.
12 Du B X, Fang Z P. Polymer Degradation and Stability, 2011, 96(10), 1725.
13 Wang N, Zhang M, Kang P, et al. Materials, 2018, 11(6), 1005.
14 Wang N, Zhang X Y, Teng H W, et al. Fine Chemicals, 2020, 37(3), 598(in Chinese).
王娜, 张鑫雨, 滕海伟,等. 精细化工, 2020, 37(3), 598.
15 Chen X, Qiu T. Polymer Testing, 2020, 81,106271
16 Maqsood M, Seide G. Polymers, 2019, 11(1),48.
17 Qi J J, Wen Q Z, Zhu J H. Materials Letters, 2019, 249,62.
18 Chen H, Wang J, Ni A, et al. Materials, 2018, 11(1), 111.
19 Xu C C, Li T, Jiang P K, et al. Tetrahedron, 2020, 76(16), 131107.
20 Li N, Xia Y, Mao Z W, et al. Polymer Degradation and Stability, 2012, 97(9), 1737.
21 Tang G, Hu Y, Song L. Procedia Engineering, 2013, 62, 371.
22 Yang B, Chen Y H, Zhang M D, et al. Composites Part A: Applied Science and Manufacturing, 2019, 123, 46.
23 Zou J H, Duan H J, Chen Y S, et al. Composites Part B: Engineering, 2020, 199,108228.
24 Ma P C, Siddiqui N A, Marom G, et al. Composites Part A: Applied Science and Manufacturing, 2010, 41(10), 1345.
[1] 褚洪岩, 高李, 秦健健, 汤金辉, 蒋金洋. 磺化石墨烯对再生砂超高性能混凝土力学性能和耐久性能的影响[J]. 材料导报, 2022, 36(5): 20090345-5.
[2] 李威霖, 王佳, 焦剑. Fe3O4-MWCNTs杂化纳米纸对纤维增强复合材料吸波性能的影响[J]. 材料导报, 2022, 36(5): 20110094-6.
[3] 张显, 蔡明, 孙宝忠. 植物纤维增强复合材料的湿热老化研究进展[J]. 材料导报, 2022, 36(5): 20100169-11.
[4] 庞华, 辛勇, 岳慧芳, 彭航, 蒲曾坪, 邱玺, 孙志鹏, 刘仕超. 大晶粒UO2燃料芯块性能研究进展[J]. 材料导报, 2022, 36(4): 22010197-8.
[5] 孙晓燕, 陈龙, 王海龙, 张静. 面向水下智能建造的3D打印混凝土配合比优化研究[J]. 材料导报, 2022, 36(4): 21050230-9.
[6] 杨博恒, 钱辉, 师亦飞, 康莉萍. 不同训练条件下NiTi形状记忆合金超细丝力学性能的稳定性[J]. 材料导报, 2022, 36(4): 21010093-5.
[7] 闫昭朴, 王扬卫, 张燕, 刘毅烽, 程焕武. 玄武岩纤维复合材料静、动态力学性能和抗弹性能研究进展[J]. 材料导报, 2022, 36(4): 20110209-9.
[8] 耿健智, 朱德举, 郭帅成, 易勇, 周琳林. 基于不同地域海砂的海水海砂混凝土力学性能试验研究[J]. 材料导报, 2022, 36(3): 21010189-8.
[9] 袁战伟, 常逢春, 马瑞, 白洁, 郑俊超. 增材制造镍基高温合金研究进展[J]. 材料导报, 2022, 36(3): 20090201-9.
[10] 谭洁慧, 邓凌峰, 张淑娴, 李金磊, 王壮, 覃榕荣. 利用微量碳纳米管与石墨烯协同包覆提高LiCoO2正极材料的性能[J]. 材料导报, 2022, 36(2): 20100058-6.
[11] 徐楷昕, 雷振, 黄瑞生, 尹立孟, 方乃文, 邹吉鹏, 曹浩. 40 mm厚TC4钛合金窄间隙激光填丝焊接头组织及性能[J]. 材料导报, 2022, 36(2): 20120180-6.
[12] 庞宝林, 王曼, 席晓丽. Cantor合金力学性能及其组织稳定性研究进展[J]. 材料导报, 2022, 36(2): 20080242-5.
[13] 欧阳柳章, 彭琢雅, 王辉, 刘江文, 朱敏. 三级金属氢化物氢压缩机设计及氢压缩材料的研究进展[J]. 材料导报, 2022, 36(1): 21030081-11.
[14] 赵燕春, 李暑, 李春玲, 赵鹏彪, 李文生, 寇生中, 阎峰云. 热处理对铁基中熵合金微观结构及力学性能的影响[J]. 材料导报, 2022, 36(1): 20090161-5.
[15] 杨东青, 王小伟, 彭勇, 周琦, 王克鸿. 超声冲击辅助熔化极电弧增材制造316L不锈钢的组织和性能研究[J]. 材料导报, 2022, 36(1): 20120270-4.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed