Please wait a minute...
材料导报  2022, Vol. 36 Issue (2): 20080242-5    https://doi.org/10.11896/cldb.20080242
  金属与金属基复合材料 |
Cantor合金力学性能及其组织稳定性研究进展
庞宝林1, 王曼1,2, 席晓丽1,3
1 北京工业大学材料与制造学部新型功能材料教育部重点实验室,北京 100124
2 北京工业大学工业大数据应用技术国家工程实验室,北京 100124
3 北京工业大学首都资源循环材料技术省部共建协同创新中心,北京 100124
Research Development of Mechanical Properties and Microstructure Stability of Cantor Alloys
PANG Baolin1, WANG Man1,2, XI Xiaoli1,3
1 Key Laboratory of Advanced Functional Materials, Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
2 National Engineering Laboratory for Industrial Big-data Application Technology, Beijing University of Technology, Beijing 100124, China
3 Collaborative Innovation Center of Capital Resource-recycling Material Technology, Beijing University of Technology, Beijing 100124, China
下载:  全 文 ( PDF ) ( 4789KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 Cantor合金是由英国的Cantor教授于2004年首次提出,是指由Co、Cr、Fe、Mn、Ni五种元素按照等原子比或者接近等原子比组成的一种高熵合金。这种合金容易形成单相FCC结构,具有高熵合金独特的四大效应,即热力学上的高熵效应、结构上的晶格畸变效应、动力学上的迟滞扩散效应以及性能上的“鸡尾酒”效应。基于这四大效应,Cantor合金具有优异的力学性能、耐磨性、耐腐蚀性以及延展性,尤其是在低温下表现出良好的断裂韧性和抗拉强度,有望替代传统合金成为未来最具发展潜力的合金。
本文简单介绍了Cantor合金独特的四大效应及其常用的制备方法,对比了不同制备方法的优缺点,详细介绍了最常用的制备Cantor合金的方法——真空电弧熔炼+铜模铸造法;系统总结了Cantor合金在低温和中高温环境下的力学性能。Cantor合金的力学性能随温度的降低而逐渐提高,这是由于低温会降低合金的层错能,有助于变形孪晶的形成,变形机制由位错滑移转变为纳米孪晶。中高温度下Cantor合金的力学性能较差,且室温下该合金屈服强度不足300 MPa。
同时,针对Cantor合金在中高温环境下力学性能较差的问题,介绍了目前改善该合金力学性能的常用方法,包括严重塑性变形加工和弥散颗粒的引入,其原理均为通过细化晶粒来提高合金的力学性能。另外,总结了Cantor合金组织稳定性的最新研究进展,当温度低于1 073 K时,Cantor合金内部有析出相出现;当温度高于1 073 K时,其仍然保持单相FCC晶体结构。最后,在此基础上对Cantor合金的发展方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
庞宝林
王曼
席晓丽
关键词:  Cantor合金  晶体结构  力学性能  组织稳定性    
Abstract: Cantor alloy was first proposed by professor B. Cantor from the UK in 2004. It is a kind of high-entropy alloy which is composed of five principal elements including cobalt, chromium, iron, manganese and nickel with equal atomic ratio or close to equal atomic ratio. This alloy exhibits a single FCC structure and has four unique effects of high-entropy alloys, including high-entropy effect in thermodynamics, lattice distortion effect in structure, hysteresis diffusion effect in dynamics and cocktail effect in performance. Based on these four effects, Cantor alloy has excellent mechanical properties, wear resistance, corrosion resistance and ductility. Especially, it shows good fracture toughness and tensile strength at low temperature, which makes it the most promising material in the future.
In this paper, the four unique effects of high-entropy alloys are briefly introduced, and the common preparation methods are compared with a summary of advantages and disadvantages of different methods. Among them, vacuum arc melting coupled with copper mold casting, the most commonly used method for Cantor alloy, is discussed in detail. The evaluation of mechanical properties with temperature of Cantor alloy is summarized. Both the tensile strength and elongation gradually increase with temperature decreasing, which is benefited from the formation of nano twins. The fault energy of Cantor alloy will decrease at low temperature and consequently the twins are easily to form, resulting in the change of deformation mechanism from dislocation slip to nano twins. However, the mechanical properties of Cantor alloy at high temperature are relatively poor. Also, the yield strength of Cantor alloy at room temperature is less than 300 MPa, which is insufficient for applications as candidate structu-ral materials.
Then research works concerning about the improvement of mechanical properties of Cantor alloy are summarized, including severe plastic deformation and introduction of dispersion particles, both of which aim to improve mechanical properties by grain refinement. According to the research results, Cantor alloys exhibit stable FCC structure when the annealing temperature is higher than 1 073 K, while different kinds of precipitates will form during annealing when the temperature is lower than 1 073 K. Finally, the prospect development is given based on the above summarization of recent development results in Cantor alloys.
Key words:  Cantor alloy    crystal structure    mechanical properties    structural stability
出版日期:  2022-01-25      发布日期:  2022-01-26
ZTFLH:  TG146.4+18  
基金资助: 国家自然科学基金-青年项目(51901005);国家重点研发计划课题(2018YFC1901705)
通讯作者:  xixiaoli@bjut.edu.cn20080242-1   
作者简介:  庞宝林,2019年6月毕业于山东交通学院,获得工科学士学位。现为北京工业大学材料科学与工程学院研究生,在席晓丽教授的指导下进行研究。目前主要研究方向为高熵合金制备、结构表征及性能分析。席晓丽,北京工业大学材料与制造学部材料学院教授,博士研究生导师。国家自然科学基金优秀青年科学基金获得者,任中国材料研究学会青年工作委员会常务理事,贵金属材料技术创新战略联盟理事会理事,中国有色金属学会稀有金属冶金学术委员会委员。发表学术论文80余篇,SCI收录40余篇。申请专利64项,已授权专利46项,获得中国有色金属工业学会科技进步一等奖、日内瓦国际发明展金奖。
引用本文:    
庞宝林, 王曼, 席晓丽. Cantor合金力学性能及其组织稳定性研究进展[J]. 材料导报, 2022, 36(2): 20080242-5.
PANG Baolin, WANG Man, XI Xiaoli. Research Development of Mechanical Properties and Microstructure Stability of Cantor Alloys. Materials Reports, 2022, 36(2): 20080242-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080242  或          http://www.mater-rep.com/CN/Y2022/V36/I2/20080242
1 Chen J, Yao Z, Wang X, et al. Materials Chemistry and Physics, 2018, 210, 136.
2 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials, 2004, 6(5), 299.
3 Cantor B, Chang I T H, Knight P, et al. Materials Science and Enginee-ring: A, 2004, 375, 213.
4 Bracq G, Laurent-Brocq M, Perriere L, et al. Acta Materialia, 2017, 128, 327.
5 He J Y, Liu W H, Wang H, et al. Acta Materialia, 2014, 62, 105.
6 Ranganathan S. Current Science, 2003, 85(10), 1404.
7 Li M J, Dong Y H, Zhang R Q, et al. Aviation Manufacturing Technology, 2019, 62(22), 58 (in Chinese).
李梦娇,董应虎,张瑞卿,等.航空制造技术, 2019, 62(22), 58.
8 Tian M B. Introduction to materials science, Tsinghua University Press, China, 2015 (in Chinese).
田民波. 材料学概论. 清华大学出版社, 2015.
9 Guo W J. Microstructure and properties of mechanically alloyed NbMoTaW(V) high melting point high entropy alloy. Master's Thesis, South China University of Science and Engineering, China, 2016 (in Chinese).
郭文晶.机械合金化NbMoTaW(V)高熔点高熵合金的组织及其性能. 硕士学位论文, 华南理工大学, 2016.
10 Xu S, Huang Y B, Liu Q, et al. Electroplating and Finishing, 2019, 38(11), 0536 (in Chinese ).
许诠, 黄燕滨, 刘谦, 等. 电镀与涂饰, 2019, 38(11), 0536.
11 Fu W J. Low temperature deformation behavior of CrMnFeCoNi high entropy alloys. Master's Thesis, Harbin Institute of Technology, China, 2019 (in Chinese).
付武靖.CrMnFeCoNi高熵合金的低温变形行为. 硕士学位论文, 哈尔滨工业大学, 2019.
12 Hu Y X, Shuang S Y, Wang B, et al. Chinese Journal of Solid Mecha-nics. 2020, 254(1-17), 1 (in Chinese).
胡远啸, 双思垚, 王冰, 等. 固体力学学报, 2020, 254(1-17), 1.
13 Won J W, Lee S, Park S H, et al. Journal of Alloys and Compounds, 2018, 742, 290.
14 Sun S J, Tian Y Z, Lin H R, et al. Journal of Alloys and Compounds, 2019, 806, 992.
15 Tirunilai A S, Sas J, Weiss K P, et al. Journal of Materials Research, 2018, 33(19), 3287.
16 Stepanov N, Tikhonovsky M, Yurchenko N, et al. Elsevier Ltd, 2015, 59, 8.
17 Sun S J, Tian Y Z, Lin H R, et al. Materials Science & Engineering A, 2019, 740, 336.
18 Otto F, Dlouhy A, Somsen C, et al. Acta Materialia, 2013, 61, 5743.
19 Xiang S, Luan H, Wu J, et al. Journal of Alloys and Compounds, 2019, 773, 387.
20 Fu W, Zheng W, Huang Y, et al. Materials Science and Engineering: A, 2020, 789, 139579.
21 Ai M E, Xiang S, Le G M, et al. Transactions of Materials and Heat Treatment, 2020, 41(3), 70 (in Chinese).
阿卜杜喀迪尔·艾麦尔, 向 硕, 乐国敏, 等. 材 料 热 处 理 学 报, 2020, 41(3),70.
22 Gludovatz B, Hohenwarter A, Catoor D, et al. Science, 2014, 345, 1153.
23 Thurston K V S, Gludovatz B, Hohenwarter A, et al. Intermetallics, 2017, 88, 65.
24 Thurston K V S, Gludovatz B, Yu Q, et al. Journal of Alloys and Compounds, 2019, 794, 525.
25 Zhang Z, Mao M M, Wang J, et al. Nature Communication, 2015, 6, 10143.
26 Laplanche G, Kostka A, Horst O M, et al. Acta Materialia, 2016, 118, 152.
27 Stepanov N D, Shaysultanov D G, Yurchenko N Y, et al. Materials Science and Engineering: A, 2015, 636, 188.
28 Gludovatz B, George E P, Ritchie R O. JOM, 2015, 67(10), 2262.
29 He J Y, Zhu C, Zhou D Q, et al. Intermetallics, 2014, 55, 9.
30 Heczel A, Kawasaki M, Lábár J L, et al. Journal of Allays and Compounds, 2017, 711, 143.
31 Xiong F, Fu R D, Li Y J, et al. Journal of Alloys and Compounds, 2020, 822, 153512.
32 Klimova M V, Semenyuk A O, Shaysultanov D G, et al. Journal of Alloys and Compounds, 2019, 811, 152000.
33 Cai J H, Du H, Xu L P, et al. Special Casting & Nonferrous Alloys, 2019, 39(1), 1240 (in Chinese)
蔡嘉洪, 杜辉, 徐丽萍, 等. 特种铸造及有色合金, 2019,39(1), 1240.
34 Vaidya M, Guruvidyathri K, Murty B S. Journal of Alloys and Compounds, 2019, 774, 856.
35 Vaidya M, Karati A, Marshal A, et al. Journal of Alloys and Compounds, 2019, 770, 1004.
36 Liu W H, Wu Y, et al. Scripta Materialia, 2013, 68, 526.
37 Schuh B, Mendez-Martin F, Völker B, et al. Acta Materialia, 2015, 96, 258.
38 Pickering E J, Muñoz-Moreno R, Stone H J, et al . Scripta Materialia, 2016, 113, 106.
39 Otto F, Dlouhy A, Pradeep K G, et al. Acta Materialia, 2016, 112, 40.
40 Zhang T C, Li J K, Wang X B. Heat Treatment of Metals. 2018, 43(9), 10 (in Chinese).
张太超, 李俊魁, 王旭彪.金属热处理, 2018, 43(9), 10.
41 Laplanche G, Berglund S, Reinhart C, et al. Acta Materialia, 2018, 161, 338.
42 Ye F, Jiao Z, Yuan Y. Materials Chemistry and Physics, 2019, 236, 121801.
43 Park N, Lee B J, Tsuji N. Journal of Alloys and Compounds, 2017, 719, 189.
44 Klimova M V, Shaysultanov D G, Chernichenko R S, et al. Materials Science and Engineering: A, 2019, 740, 201.
[1] 徐楷昕, 雷振, 黄瑞生, 尹立孟, 方乃文, 邹吉鹏, 曹浩. 40 mm厚TC4钛合金窄间隙激光填丝焊接头组织及性能[J]. 材料导报, 2022, 36(2): 20120180-6.
[2] 欧阳柳章, 彭琢雅, 王辉, 刘江文, 朱敏. 三级金属氢化物氢压缩机设计及氢压缩材料的研究进展[J]. 材料导报, 2022, 36(1): 21030081-11.
[3] 赵燕春, 李暑, 李春玲, 赵鹏彪, 李文生, 寇生中, 阎峰云. 热处理对铁基中熵合金微观结构及力学性能的影响[J]. 材料导报, 2022, 36(1): 20090161-5.
[4] 杨东青, 王小伟, 彭勇, 周琦, 王克鸿. 超声冲击辅助熔化极电弧增材制造316L不锈钢的组织和性能研究[J]. 材料导报, 2022, 36(1): 20120270-4.
[5] 杨佳行, 韩永典, 徐连勇. 瞬态电流键合对Sn-Ag-Cu钎料焊点界面反应的影响[J]. 材料导报, 2022, 36(1): 20100132-5.
[6] 马新, 邱海鹏, 梁艳媛, 刘善华, 王晓猛, 赵禹良, 陈明伟, 谢巍杰. CVD BN界面层对Si3N4/SiBN复合材料弯曲性能的影响[J]. 材料导报, 2021, 35(z2): 86-89.
[7] 杨柯楠, 金珊珊. 水泥乳化沥青砂浆性能研究现状[J]. 材料导报, 2021, 35(z2): 145-149.
[8] 李凯雯, 刘娟红, 张超, 段品佳, 张博超. 超低温及低温循环对混凝土材料性能的影响[J]. 材料导报, 2021, 35(z2): 183-187.
[9] 刘甲, 徐家磊, 马照伟, 雷小伟, 高奇, 崔永杰. 钛合金等离子和MIG复合焊接技术研究[J]. 材料导报, 2021, 35(z2): 358-360.
[10] 袁碧亮, 李传强, 董勇, 张鹏. 增材制造AlxCoCrFeNi系高熵合金的研究进展[J]. 材料导报, 2021, 35(z2): 417-423.
[11] 曹鹏, 雷高峰, 苏成明, 舒林森, 石舒婷, 贾北北, 田伟红. 不同送料工艺对液压支架激光熔覆再制造的影响[J]. 材料导报, 2021, 35(z2): 424-427.
[12] 沈楚, 冯庆, 王思琦, 杨勃, 何秀玲, 李博, 苗东, 朱许刚. 退火温度对旋压工业纯钛TA1组织演变与力学性能的影响[J]. 材料导报, 2021, 35(z2): 452-455.
[13] 胡捷, 程仁菊, 李上民, 谭磊, 李春雨, 刘运, 宋洁, 杨明波. Y对Mg-10Gd-xY-1Zn-0.5Zr(x=1,2)镁合金铸态显微组织和力学性能的影响[J]. 材料导报, 2021, 35(z2): 456-459.
[14] 李崇智, 孙浩, 叶国林, 张艺劼. 酸化拟薄水铝石改性镍钢渣复合掺合料的效果研究[J]. 材料导报, 2021, 35(z2): 460-464.
[15] 廖明义, 王文恒, 王旭, 张春庆. 无规溶聚苯乙烯/丁二烯橡胶的负离子法合成、微观结构和性能[J]. 材料导报, 2021, 35(z2): 465-469.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[4] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[5] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[8] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed