Please wait a minute...
材料导报  2022, Vol. 36 Issue (2): 20080033-9    https://doi.org/10.11896/cldb.20080033
  金属与金属基复合材料 |
非晶态合金在废水处理中的催化性能
裴烈飞1,2, 张香云1, 袁子洲1
1 兰州理工大学材料科学与工程学院,兰州 730050
2 白银矿冶职业技术学院矿冶工程学院,甘肃 白银 730900
Catalytic Performance of Amorphous Alloy in Wastewater Treatment
PEI Liefei1,2, ZHANG Xiangyun1, YUAN Zizhou1
1 School of Materials Science and Engineering, Lanzhou University of Technology , Lanzhou 730050, China
2 School of Mining and Metallurgical Engineering, Baiyin Mining and Metallurgical Vocational and Technical College, Baiyin 730900, Gansu, China
下载:  全 文 ( PDF ) ( 12366KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着印染工业的发展,染料废水的排放已成为水体污染的主要来源之一。目前常用的降解剂零价铁(ZVI)表面钝化现象严重,活性中心类型单一,导致其对染料的降解效率低下。因此,急需开发反应活性高、循环利用性好的新型降解材料作为ZVI的替代品。而具有热力学亚稳态结构的非晶态合金(MGs)以其优异的催化活性,在催化反应领域的重要性逐渐凸显。研究表明,MGs在染料废水处理中表现出超高的降解效率、较低的金属浸出率和稳定的催化性能。本文较简洁地阐述了当前染料废水的污染现状及处理方法,着重介绍了铁基、镁基和其他非晶合金作为环境催化剂对偶氮染料降解性能的研究进展,系统地综述了降解反应中的脱色、矿化、金属浸出、持续性和可重复使用等性能。与ZVI和晶态合金相比,独特的原子排布结构使MGs与染料的反应活化能降低,表观反应速率常数变大,价带顶下移,氧化还原电位降低,产物层更易脱落。对比传统降解材料发现MGs的性能优势明显。然而,MGs在工程应用中仍然存在着非晶形成能力差、金属浸出造成环境二次污染等问题。为此,本文对MGs催化剂的进一步开发及应用提出了几点建议:(1)MGs与其他强导电性物质(如生物炭)掺杂后制备成复合材料,可在降低MGs用量的同时提高电子传输能力;(2)建立非晶态-电子结构-催化性能之间的理论联系;(3)拓展其应用范围至石化废水、制药废水和食品加工废水等其他污染废水的处理工艺。以期为MGs在环境污染物降解领域提供更多新的参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
裴烈飞
张香云
袁子洲
关键词:  非晶态合金  偶氮染料  降解  反应活性    
Abstract: With the development of printing and dyeing industry, the discharge of dye wastewater has become one of the main sources of water pollution. At present, the commonly used degradation agent zero-valent iron (ZVI) has a serious surface passivation phenomenon and a single type of active center, which leads to its low degradation efficiency of dyes. Therefore, there is an urgent need to develop new biodegradable materials with high reaction activity and good recycling as a substitute for ZVI. The amorphous alloy (MGs) with thermodynamic metastable structure becomes more and more important in the field of catalytic reaction because of its excellent catalytic activity. The results show that MGs has ultra-high degradation efficiency, low metal leaching rate and stable catalytic performance in the treatment of dye wastewater. This paper briefly describes the current pollution status and treatment methods of dye wastewater, and focuses on the research progress of Fe-based, Mg-based and other amorphous alloys as environmental catalysts for the degradation of azo dyes. The properties of decolorization, mineralization, metal lea-ching, persistence and reusability in degradation are systematically reviewed. Compared with ZVI and crystalline alloys, the unique physical structure and properties lead to the decrease of activation energy, the increase of apparent reaction rate constant, the downward shift of valence band top, the decrease of redox potential and the shedding of product layer in the reaction with dyes. Compared with other traditional processing me-thods, it is found that the performance advantage of MGs is obvious. However, there are still some problems in engineering applications, such as poor amorphous forming ability, secondary environmental pollution caused by metal leaching and so on. For this reason, this paper puts forward some suggestions for the further development and application of MGs catalyst. (1) Compounding with other highly conductive substances (such as biochar) can reduce the amount of catalyst and improve the ability of electron transport at the same time. (2) The theoretical relationship between amorphous, electronic structure and catalytic performance should be established. (3) Its application scope should be extended to the treatment of petrochemical wastewater, pharmaceutical wastewater, heavy metal wastewater and other polluted wastewater. It is expected to provide more new references for MGs in the field of environmental pollutant degradation.
Key words:  amorphous alloy    azo dye    degradation    reaction activity
出版日期:  2022-01-25      发布日期:  2022-01-26
ZTFLH:  X52  
基金资助: 国家自然科学基金地区科学基金项目(51661015;52061024);甘肃省教育厅高校创新基金项目(2021B-553);浙江省自然科学基金 (LQ20E010002)
通讯作者:  yuanzz@lut.cn20080033-1   
作者简介:  裴烈飞,2018年获得兰州理工大学硕士学位。现为兰州理工大学材料科学与工程学院博士研究生,在袁子洲教授的指导下进行研究。目前主要研究领域为非晶态合金在环境污染物降解中的应用。袁子洲,2008年获得兰州理工大学博士学位。目前是兰州理工大学教授。主要从事消失模铸造及非晶合金的研究工作,在国内外重要期刊上发表文章百余篇。
引用本文:    
裴烈飞, 张香云, 袁子洲. 非晶态合金在废水处理中的催化性能[J]. 材料导报, 2022, 36(2): 20080033-9.
PEI Liefei, ZHANG Xiangyun, YUAN Zizhou. Catalytic Performance of Amorphous Alloy in Wastewater Treatment. Materials Reports, 2022, 36(2): 20080033-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080033  或          http://www.mater-rep.com/CN/Y2022/V36/I2/20080033
1 Chen Z L, Dong Y C, Wang P, et al. Materials Reports B:Research Papers, 2016, 30(7), 34 (in Chinese).
陈震雷, 董永春, 王鹏, 等.材料导报:研究篇, 2016, 30(7), 34.
2 Yang Q X, Jia Z J, Pan F, et al. Techniques and Equipment for Environmental Pollution Control, 2005, 1(2), 1 (in Chinese).
杨清香, 贾振杰, 潘峰, 等.环境污染治理技术与设备. 2005, 1(2), 1.
3 Wang Y Z, Chen M X , Hu C, et al. Acta Entiae Circumstantiae, 2000, 20(6), 772(in Chinese).
王怡中, 陈梅雪,胡春, 等. 环境科学学报, 2000, 20(6), 772.
4 Tang Y, Shao Y, Chen N, et al. RSC Advances, 2015, 5(43), 34032.
5 Ajaz M, Elahi A, Rehman A. Journal of Water Reuse and Desalination, 2018, 8(4), 507.
6 Kong Q, Wang X, Lou T. Carbohydrate Polymers, 2020, DOI: 10.1016/j.carbpol.2020.116481
7 Liu M H, He Q Y, Zhang K F, et al. Journal of Hazardous Materials, 2020, DOI: 10.1016/j.jhazmat.2020.122582.
8 Lyu Z W, Yan Y Q, Yuan C C, et al. Materials & Design, 2020, DOI: 10.1016/j.matdes.2020.108876.
9 Shokrollahzadeh S, Abassi M, Ranjbar M, et al. Environmental Enginee-ring Research, 2018, 24(3), 513.
10 Tang Y, He D, Guo Y, et al. Chemosphere, 2020, DOI: 10.1016/j.chemosphere.2020.127368.
11 Yang X, Gu W, Ma Y, et al. Colloids and Surfaces A Physicochemical and Engineering Aspects, 2020, DOI: 10.1016/j.colsurfa.2020.124748.
12 Rodrigues C S D, Madeira L M, Boaventura R A R. Environmental Technology, 2013, 34(5-8), 719.
13 Khataee A R, Pons M N, Zahraa O. Journal of Hazardous Materials, 2009, 168(1), 451.
14 Wu Y, Peng K. JOM, 2018, 70(6), 861.
15 Chen Q, Yan Z, Guo L, et al. Journal of Alloys and Compounds, 2020, DOI: 10.1016/j.jallcom.2020.154817.
16 Tang Y, Shao Y, Chen N, et al. RSC Advances, 2014, 5(8), 6215.
17 Zhang C, Zhang H, Lv M, et al. Journal of Non-crystalline Solids, 2010, 356(33), 1703.
18 Zeng D, Dan Z, Qin F, et al. Materials Chemistry and Physics, 2020, DOI: 10.1016/j.matchemphys.2019.122307.
19 Chen S, Yang G, Luo S, et al. Journal of Materials Chemistry A, 2017, 5(27), 14230.
20 Wang X, Pan Y, Zhu Z, et al. Chemosphere, 2014, 117, 638.
21 Jia Z, Liang S X, Zhang W C, et al. Journal of the Taiwan Institute of Chemical Engineers, 2017, 71, 129.
22 Luo X, Li R, Zong J, et al. Applied Surface Science, 2014, 305, 314.
23 Zhang C, Zhu Z, Zhang H. Results in Physics, 2017, 7, 2054.
24 Jia Z, Wang Q, Sun L, et al. Advanced Functional Materials, 2019, 29(19), 18078571.
25 Zhang C, Zhu Z, Zhang H, et al. Journal of Non-Crystalline Solids, 2012, 358(1), 61.
26 Zhang C, Zhu Z, Zhang H, et al. Science Bulletin, 2011, 56(36), 3988.
27 Wang Q , Chen M , Lin P , et al. Journal of Materials Chemistry A, 2018, 6(23), 10686.
28 Gong D, Li H Y, Liu H Y, et al. Journal of Safety and Environment, 2013, 38(1), 21.
29 Monath T, Levenbook I, Soike K, et al. Journal of Virology, 2000, 74(4), 1742.
30 Jia Z, Duan X, Zhang W C, et al. Scientific Reports, 2016, 6(1), 1.
31 Liang S, Jia Z, Zhang W, et al. Materials & Design, 2017, 119, 244.
32 Jia Z, Li X F , Liang S X,et al. Materials in Environmental Engineering, 2017, DOI: 10.1515/9783110516623-075.
33 Souza C A, May J E, Carlos I A, et al. Journal of Non-crystalline Solids, 2002, 304(1),210.
34 Baron A, Szewieczek D, Nawrat G, et al. Electrochimica Acta, 2007, 52(18), 5690.
35 Tong X, Wang G, Stachurski Z H, et al. Scientific Reports, 2016, 6(1), 1.
36 Chen J, Zhu L. Catalysis Today, 2007, 126(3-4), 463.
37 Wang J Q, Liu Y H, Chen M W, et al. Scientific Reports, 2012, 2(1), 1.
38 Miao F, Wang Q, Zeng Q, et al. Journal of Materials Science & Technology, 2020, 38, 107.
39 Wang X, Zhang Q, Liang S, et al. Catalysts, 2020, DOI: 10.3390/catal10010048.
40 Li Z K, Qin X D, Zhu Z W,et al. Journal of Materials Chemistry A, 2020, 8(27), 10855.
41 Yang W, Wang Q, Li W, et al. Materials & Design, 2019, 118, 136.
42 Weng N, Feng W,Qin F X, et al. Materials, 2017, DOI: 10.3390/ma10091001.
43 Zhang C Q, Zhu Z W, Zhang H F, et al. Journal of Environmental Sciences, 2012, 24(6), 1021.
44 Hu Y C, Wang Y Z, Su R, et al. Advanced Materials, 2016, 28(46), 10293.
45 Zhang C Q, Zhu Z W, Zhang H F, et al. Chinese Science Bulletin, 2011, 56(36), 3988.
46 Chen S Q, Dong L Z, Hui K Z, et al. Journal of Iron and Steel Research International, 2018, 25(6),608.
47 Chen S Q , Hui K Z , Dong L Z , et al. Science China Materials, 2020, 63(3), 453.
48 Das S, Garrison S, Mukherjee S, et al. Advanced Engineering Materials, 2016, 18(2), 214.
49 Xie S, Huang P, Kruzic J J, et al. DNA Repair, 2016, 6(1), 1.
50 Qin X, Li Z, Zhu Z, et al. Journal of Materials Science & Technology, 2017, 33(10), 1147.
51 Deng Z, Zhang X H, Chan K C, et al. Chemosphere, 2017, 174, 76.
52 Zhang X H, Zeng Y Q, Yin L, et al. Corrosion Science, 2018, 141, 109.
53 Si J, Gu J, Luan H, et al. Journal of Hazardous Materials, 2020, DOI: 10.1016/j.jhazmat.2020.122043.
54 Ji L, Peng S, Zheng Z G, et al. Journal of Alloys and Compounds, 2020, DOI: 10.1016/j.jallcom.2019.152347.
55 Dai T, Wang N. Journal of Superconductivity and Novel Magnetism, 2019, 32(11), 3699.
56 Zhang C, Zhang X, Zhang S, et al. Results in Physics, 2019, DOI: 10.1016/j.rinp.2019.102523.
57 Chen Q, Pang J, Yan Z C, et al. Journal of Non-Crystalline Solids, 2020, DOI: 10.1016/j.jnoncrysol.2019.119802.
58 Wu S, Pan Y, Lu J, et al. Journal of Materials Science & Technology, 2019, 35(8), 1629.
59 Chen P, Hu X M, Qi Y M, et al. Metals, 2017, 7(11), 485.
60 Zhao Y, Si J J, Song J G, et al. Materials Science and Engineering B-advanced Functional Solid-state Materials, 2014, 118, 46.
61 Ramya M, Karthika M, Selvakumar R,et al. Journal of Alloys & Compounds, 2016, 696, 185.
62 Qin X D, Zhu Z W, Liu G, et al. Scientific Reports, 2015, 55(1), 1.
63 Lv Z Y, Liu X J, Jia B, et al. Scientific Reports, 2016, 6(1), 1.
64 Wang P, Wang J, Li H, et al. Journal of Alloys and Compounds, 2017, 701, 759.
65 Zhang X, Liu J, Li J, et al. Applied Physics A, 2020, 126(4), 1.
66 Liang S X, Zhang W, Zhang L, et al. Sustainable Materials and Techno-logies, 2019, DOI: 10.1016/j.susmat.2019.e00126.
67 Wang P, Bian X F, Li Y X. Chinese Science Bulletin, 2012, 57(1), 33.
68 Zhang C, Zhang X, Zhang S, et al. Results in Physics, 2019, DOI: 10.1016/j.rinp.2019.102523.
[1] 刘小林, 张勇, 张林, 罗炫. Cu2O-CuO/TiO2复合壳聚糖/马来酸酐/二乙烯基苯的制备及吸附-降解染料性能研究[J]. 材料导报, 2022, 36(1): 20100124-6.
[2] 胡绍争, 王菲, 李政, 马宏飞, 李萍. 新型全光谱响应W18O49/g-C3N4异质结催化剂的构建及光催化降解有机染料性能研究[J]. 材料导报, 2021, 35(8): 8011-8016.
[3] 李强, 赵特, 魏磊山, 陈明华, 孙旭东. Cu含量对生物可降解Zn-Cu合金组织和性能的影响[J]. 材料导报, 2021, 35(8): 8088-8092.
[4] 金宇, 冯伟鹏, 董志君, ManuelMonasterio, 李明雨. 辅助胶凝材料玻璃体结构与胶凝活性的研究进展[J]. 材料导报, 2021, 35(3): 3016-3020.
[5] 姜英勇, 任亮, 任重, 李文博, 帅嘉欣, 张明耀, 张会轩. 生物可降解PBS聚酯合金的制备与性能调控[J]. 材料导报, 2021, 35(22): 22151-22159.
[6] 马娅娅, 李强, 穆保霞, 马旭. 铁含量对Fe-P-C非晶合金降解亚甲基蓝性能的影响[J]. 材料导报, 2021, 35(21): 21085-21090.
[7] 姚玉梅, 袁湘汝, 韩鲁佳, 杨增玲, 刘贤. 畜禽骨蛋白质材料化利用的研究现状与发展趋势分析[J]. 材料导报, 2021, 35(17): 17136-17142.
[8] 李冬梅, 左定荣, 余鹏. 近室温磁制冷合金材料的研究进展及发展前景[J]. 材料导报, 2021, 35(11): 11119-11125.
[9] 李华芳, 郑宜星, 王鲁宁. 可降解医用金属功能化表面改性研究进展[J]. 材料导报, 2021, 35(1): 1168-1176.
[10] 赵可一, 曾和平. 镀铜空心玻璃微珠的光催化降解性能[J]. 材料导报, 2020, 34(Z2): 132-137.
[11] 贺龙朝, 荆磊, 余森, 徐云浩, 于振涛. 医用可降解镁基复合材料的研究现状及趋势[J]. 材料导报, 2020, 34(Z2): 323-326.
[12] 王德军, 李慧, 姜锡仁, 赵朝成, 赵玉慧, 邓春梅, 王鑫平. 高级氧化技术去除水环境中多环芳烃的研究进展[J]. 材料导报, 2020, 34(Z2): 507-512.
[13] 黄爱宾, 刘彩凤, 张晓惠. 聚乳酸共混的研究进展[J]. 材料导报, 2020, 34(Z2): 586-589.
[14] 赵杰, 钱俊雯, 赵军平. 基于Scopus的生物可降解金属材料文献调研与分析[J]. 材料导报, 2020, 34(Z1): 469-475.
[15] 余东海, 熊开琴, 黄楠. 等离子体聚合聚环氧乙烷类涂层用于提高镁合金心血管支架抗腐蚀性能[J]. 材料导报, 2020, 34(6): 6166-6171.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[4] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[5] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[8] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed