Please wait a minute...
材料导报  2021, Vol. 35 Issue (8): 8011-8016    https://doi.org/10.11896/cldb.20030143
  无机非金属及其复合材料 |
新型全光谱响应W18O49/g-C3N4异质结催化剂的构建及光催化降解有机染料性能研究
胡绍争, 王菲, 李政, 马宏飞, 李萍
辽宁石油化工大学化学化工与环境学部, 抚顺 113001
Construction of Full-spectrum-driven W18O49/g-C3N4 Heterojunction Catalyst with Outstanding Photocatalytic Organic Dyestuff Degradation Ability
HU Shaozheng, WANG Fei, LI Zheng, MA Hongfei, LI Ping
College of Chemistry, Chemical Engineering, and Environmental Engineering, Liaoning Shihua University, Fushun 113001, China
下载:  全 文 ( PDF ) ( 7071KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 太阳光中有一多半是红外光,而利用红外光的光催化反应却鲜有报道。本研究制备了一种全光谱响应的W18O49/g-C3N4异质结催化剂,并考察了催化剂光降解罗丹明B(RhB)的性能。采用X射线衍射(XRD)、氮气吸附、紫外-可见-近红外(UV-Vis-NIR)光谱、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、荧光光谱(PL)、X射线光电子能谱(XPS)和电化学阻抗谱(EIS)等手段对催化剂进行了表征。结果显示制备的催化剂对250~1 800 nm范围内的光均显示出较强的吸收。制备的异质结催化剂对RhB的降解速率常数达到0.015 9 min-1,分别是纯g-C3N4和W18O49的5.3倍、11.4倍,且具有优异的催化稳定性。W18O49一方面作为红外光吸收材料,提高了催化剂对光的吸收利用,另一方面与g-C3N4组成异质结催化剂,显著提高了光生电荷分离效率。此外,本研究还考察了W18O49/g-C3N4异质结催化剂降解RhB可能的反应机理。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡绍争
王菲
李政
马宏飞
李萍
关键词:  氮化碳  W18O49  全光谱  异质结  光降解    
Abstract: More than half of the solar spectrum is near infrared (NIR) light. However, the report concerning the photocatalytic reaction using NIR light is rare. In this work, a full-spectrum-driven W18O49/g-C3N4 heterojunction catalyst was prepared and the photocatalytic RhB degradation ability was investigated. X-ray diffraction, N2 adsorption, UV-Vis-NIR spectroscopy, scanning electron microscope, transmission electron microscope, photoluminescence, X-ray photoelectron spectroscope and electrochemical impedance spectra were used to characterize the prepared catalysts. The result indicates that as-prepared W18O49/g-C3N4 heterojunction catalysts display strong light absorption in the region of 250—1 800 nm. The reaction rate constant for W18O49/g-C3N4 heterojunction catalyst arrives 0.015 9 min-1, which is 5.3 times and 11.4 times higher than that of neat g-C3N4 and W18O49, as well as excellent catalytic stability. In addition, the mechanism of degradation of RhB by W18O49/g-C3N4 heterojunction catalyst was investigated.
Key words:  g-C3N4    W18O49    full-spectrum    heterojunction    photodegradation
               出版日期:  2021-04-25      发布日期:  2021-05-10
ZTFLH:  O641  
  O649  
基金资助: 国家自然科学基金(41571464)及辽宁省教育厅项目(L2014145)
通讯作者:  hushaozhengInpu@163.com   
作者简介:  胡绍争,辽宁石油化工大学教授。2003年9月至2010年10月,在大连理工大学获得工业催化专业博士学位,同年进入辽宁石油化工大学任教。以第一作者或通讯作者身份在Applied Catalysis B: Environmental, Journal of Power Sources, ACS Sustainable Chemistry Engineering, Catalysis Science & Technology, Journal of Hazardous Material, Dalton Transactions, Chemistry: An Asian Journal, Chemical Engineering Journal, Applied Surface Science等国际主流刊物上发表论文三十余篇,他引1 200余次。两篇论文被评为全球前1%高引用论文(ESI)。担任多个国际著名刊物审稿人及仲裁人。
引用本文:    
胡绍争, 王菲, 李政, 马宏飞, 李萍. 新型全光谱响应W18O49/g-C3N4异质结催化剂的构建及光催化降解有机染料性能研究[J]. 材料导报, 2021, 35(8): 8011-8016.
HU Shaozheng, WANG Fei, LI Zheng, MA Hongfei, LI Ping. Construction of Full-spectrum-driven W18O49/g-C3N4 Heterojunction Catalyst with Outstanding Photocatalytic Organic Dyestuff Degradation Ability. Materials Reports, 2021, 35(8): 8011-8016.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20030143  或          http://www.mater-rep.com/CN/Y2021/V35/I8/8011
1 Yan M, Li G L, Guo C S, et al. Nanoscale,2016,8,17828.
2 Chang X T, Sun S B, Dong L H, et al. Materials Letter,2012,83,133.
3 Wang G, Huang B, Ma X, et al. Angewandte Chemie International Edition,2013,52,4810.
4 Hu S Z, Qu X Y, Li P, et al. Chemical Engineering Journal,2018,334,410.
5 Liu G, Niu P, Sun C H, et al. Journal of the American Chemistry Society,2010,132,11642.
6 Singh J A, Overbury S H, Dudney N J, et al. ACS Catalysis,2012,2,1138.
7 Chang C, Fu Y, Hu M, et al. Applied Catalysis B: Environmental,2013,142-143,553.
8 Sridharan K, Jang E, Park T J. Applied Catalysis B: Environmental,2013,142-143,718.
9 Zhang S Q, Yang Y X, Guo Y N, et al. Journal of Hazardous Materials,2013,261,235.
10 Dong G H, Ho W K, Wang C Y. Journal of Materials Chemistry A,2015,3,23435.
11 Hu S Z, Li F Y, Fan Z P, et al. Dalton Transactions,2015,44,1084.
12 Song K N, Xiao F, Zhang L J, et al. Journal of Molecular Catalysis A: Chemical,2016,418-419,95.
13 Guo X X, Qin X Y, Xue Z J, et al. RSC Advances,2016,6,48537.
14 Chen P O, Qin M L, Liu Y, et al. New Journal of Chemistry,2015,39,1196.
15 Guan M, Xiao C, Zhang J, et al. Journal of the American Chemistry Society,2013,135,10411.
16 Bi W, Ye C, Xiao C, et al. Small,2014,10,2820.
17 Guo C S, Yin S, Yan M, et al. Inorganic Chemistry,2012,51,4763.
18 Xi G, Ouyang S, Li P, et al. Angewandte Chemie International Edition,2012,51,2395.
19 Wang Y, Wang X C, Antonietti M. Angewandte Chemie International Edition,2012,51,68.
20 Zhang L H, Jin Z Y, Huang S L, et al. Applied Catalysis B: Environmental,2019,246,61.
21 Di J, Xia J X, Yin S, et al. Journal of Materials Chemistry A,2014,2,5340.
22 Ge L, Han C. Applied Catalysis B: Environmental,2012,117-118,268.
23 Lei W, Portehault D, Dimova R, et al. Journal of the American Chemistry Society,2011,133,7121.
24 Zhang Y W, Liu J H, Wu G, et al. Nanoscale,2012,4,5300.
25 Xi G, Ouyang S, Li P, et al. Angewandte Chemie International Edition,2012,51,2395.
26 Wang D, Sun J B, Cao X, et al. Journal of Materials Chemistry A,2013,1,8653.
27 Zhang S Q, Yang Y X, Guo Y N, et al. Journal of Hazardous Materials,2013,261,235.
28 Liu G, Niu P, Yin L C, et al. Journal of the American Chemistry Society,2012,134,9070.
29 Kondo K, Murakami N, Ye C, et al. Applied Catalysis B: Environmental,2013,142-143,362.
30 He Y M, Zhang L H, Teng B T, et al. Environmental Science Technology,2015,49,649.
[1] 孙晓玲, 弓巧娟, 梁云霞, 巩鹏妮. 新型薄层氮化碳/氧化石墨烯复合材料的制备及在锌-空气电池中的应用[J]. 材料导报, 2021, 35(8): 8001-8006.
[2] 伍书祺, 黄泽皑, 李晴川, 饶志强, 周莹. Nb2O5/BiOClⅡ型异质结的构建及增强光催化还原二氧化碳[J]. 材料导报, 2021, 35(6): 6001-6007.
[3] 姜鹏程, 王周福, 王玺堂, 刘浩, 马妍. 不同气氛下类石墨相氮化碳的合成及热稳定性能[J]. 材料导报, 2021, 35(6): 6048-6053.
[4] 刘畅, 丁博, 杨贤峰, 叶瑞雪, 季益龙, 代兵, 吕辉鸿. 新型FeWO4@ZnS异质结微球制备及其光催化降解四环素和亚甲基蓝研究[J]. 材料导报, 2020, 34(Z2): 78-83.
[5] 罗凯怡, 袁欢, 刘禹彤, 张嘉羲, 张秋平, 王笑乙, 胡文宇, 李靖, 徐明. Ag沉积的ZnO∶Cu纳米颗粒的制备及高效光催化研究[J]. 材料导报, 2020, 34(4): 4013-4019.
[6] 俞坤, 刘金香, 谢水波, 刘迎九, 葛玉杰. 聚吡咯/石墨相氮化碳复合材料吸附铀(Ⅵ)的性能与机制[J]. 材料导报, 2020, 34(23): 23020-23026.
[7] 黄国富, 刘坤, 王忠凯, 宋蓉蓉, 朱颖, 汤睿, 张寒冰, 童张法. SDBS诱导磁性花球状SDBS/BiOBr-MB的制备及其增强的可见光催化性能[J]. 材料导报, 2020, 34(22): 22024-22029.
[8] 杨玥, 赵斌, 张友魁, 李敏, 段涛. g-C3N4光催化还原净化重金属离子的研究进展[J]. 材料导报, 2020, 34(17): 17132-17138.
[9] 孙宇杰, 刘玉芹, 徐芬, 孙立贤. 尖晶石型金属氧化物的制备及光催化有机污染物降解:综述[J]. 材料导报, 2020, 34(15): 15021-15032.
[10] 李玉佩, 王晓静, 赵君, 胡秋月, 王利勇, 成永强. 零维/二维Bi2S3/g-C3N4异质结的原位构建及光催化性能[J]. 材料导报, 2020, 34(15): 15033-15038.
[11] 余慧丽, 杭祖圣, 怀旭, 黄玉安, 张春祥, 张金泉. 基于催化活性提升的g-C3N4的表面活化、敏化及功能化研究进展[J]. 材料导报, 2020, 34(11): 11121-11128.
[12] 胡文宇, 王笑乙, 袁欢, 刘禹彤, 陈雨, 张秋平, 张嘉羲, 罗凯怡, 李靖, 徐明. Ag沉积CuO-ZnO纳米复合材料的溶胶-凝胶合成及光催化性能研究[J]. 材料导报, 2020, 34(10): 10018-10023.
[13] 周理想, 黄仕华, 吴锋民. 异质结太阳能电池的仿真模拟研究和界面态密度对效率的影响[J]. 材料导报, 2019, 33(Z2): 28-31.
[14] 刘畅, 张志宾, 王有群, 钟玮鸿, 刘云海. 基于g-C3N4异质结复合材料光催化降解污染物的研究进展[J]. 材料导报, 2019, 33(Z2): 104-112.
[15] 潘留仙, 夏庆林. 新型二维半导体材料砷烯的研究进展[J]. 材料导报, 2019, 33(z1): 22-27.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed