Please wait a minute...
材料导报  2020, Vol. 34 Issue (22): 22024-22029    https://doi.org/10.11896/cldb.19100100
  无机非金属及其复合材料 |
SDBS诱导磁性花球状SDBS/BiOBr-MB的制备及其增强的可见光催化性能
黄国富1, 刘坤2, 王忠凯1, 宋蓉蓉1, 朱颖1, 汤睿2, 张寒冰1,2, 童张法2
1 广西大学资源环境与材料学院,南宁 530004
2 广西大学化学化工学院,广西石化资源加工及工程强化技术重点实验室,南宁 530004
Preparation and Enhanced Visible Light Photocatalytic Activity of Magnetic Flower-like SDBS/BiOBr-MB Induced by SDBS
HUANG Guofu1, LIU Kun2, WANG Zhongkai1, SONG Rongrong1, ZHU Ying1, TANG Rui2, ZHANG Hanbing1,2, TONG Zhangfa2
1 College of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
2 Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
下载:  全 文 ( PDF ) ( 4539KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为获得光催化活性强、磁稳定性高且可快速磁分离的多功能铋系光催化材料,以磁性膨润土(Magnetic bentonite, MB)为载体,十二烷基苯磺酸钠(Sodium dodecylbenzene sulfonate, SDBS)为表面修饰剂,采用载体负载、半导体复合以及表面活性剂调控形貌等手段对溴氧化铋(Bismuth bromide, BiOBr)进行改性,快速合成花球状SDBS修饰的磁性膨润土基负载溴氧化铋(SDBS/BiOBr-MB)复合光催化材料。同时,利用多种表征技术对SDBS/BiOBr-MB进行形貌结构特性分析,并以罗丹明B(Rhodamine B, RhB)为目标污染物,考察SDBS/BiOBr-MB的可见光催化活性。研究结果表明,SDBS/BiOBr-MB具有的花球状形貌提高了材料对可见光的吸收利用;同时Fe3O4@BiOBr异质结促进了光生载流子的分离;此外,磁性膨润土的引入减少了主体催化剂BiOBr的团聚并实现了快速磁分离回收,五次循环使用后复合光催化剂仍具有良好的可见光催化活性,对RhB的降解率达到92%。本研究可为BiOBr及其他可见光催化剂的集成改性提供有益的参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄国富
刘坤
王忠凯
宋蓉蓉
朱颖
汤睿
张寒冰
童张法
关键词:  有机修饰  溴氧化铋  磁性膨润土  十二烷基苯磺酸钠  形貌调控  异质结  光催化    
Abstract: To obtain multifunctional bismuth series photocatalytic materials with strong photocatalytic activity,superior magnetic stability and effective magnetic separation, Bismuth bromide oxide (BiOBr) was organically modified by sodium dodecylbenzene sulfonate (SDBS) and carried by magnetic bentonite (MB). Flower-like spherical SDBS modified MB-based supported BiOBr (SDBS/BiOBr-MB)composite photocatalyst was successfully synthesized by synthesizing some methods of load modification, semiconductors coupling and morphology control. Subsequently, the synthesized samples were characterized by a series of characterization technologies and the photocatalytic performance was investigated by Rhodamine B (RhB) under visible light irradiation. The experimental results confirmed the flower-like spherical SDBS/BiOBr-MB boosted absorption and utilization of visible light. While the effective separation of photogenerated carriers can be achieved due to Fe3O4@BiOBr heterojunction. In addition, the introduction of MB effectively reduced agglomeration of BiOBr and achieved efficiently solid-liquid separation by an external magnet. After five recycles, the SDBS/BiOBr-MB photocatalyst still exhibited high photocatalytic activity and stability for RhB (92%) under visible-light irradiation. Therefore, this study can provide valuable reference for the integrated modification of BiOBr and other visible-light photocatalysts.
Key words:  organic modification    bismuth bromide (BiOBr)    magnetic bentonite    sodium dodecylbenzene sulfonate (SDBS)    morphology control    heterojunction    photocatalysis
               出版日期:  2020-11-25      发布日期:  2020-12-02
ZTFLH:  O643  
基金资助: 国家自然科学基金(21576055);广西石化资源加工及过程强化技术重点实验室主任课题(2018Z004)
通讯作者:  coldicezhang0771@163.com   
作者简介:  黄国富,2018年毕业于天津工业大学,获得工学学士学位。2018年开始于广西大学攻读硕士学位,主要从事半导体光催化与污水净化方面的研究。张寒冰,广西大学副教授,硕士研究生导师,主要从事环境催化与吸附材料制备及生态修复应用,环境中污染物迁移转化规律方面的研究。
引用本文:    
黄国富, 刘坤, 王忠凯, 宋蓉蓉, 朱颖, 汤睿, 张寒冰, 童张法. SDBS诱导磁性花球状SDBS/BiOBr-MB的制备及其增强的可见光催化性能[J]. 材料导报, 2020, 34(22): 22024-22029.
HUANG Guofu, LIU Kun, WANG Zhongkai, SONG Rongrong, ZHU Ying, TANG Rui, ZHANG Hanbing, TONG Zhangfa. Preparation and Enhanced Visible Light Photocatalytic Activity of Magnetic Flower-like SDBS/BiOBr-MB Induced by SDBS. Materials Reports, 2020, 34(22): 22024-22029.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19100100  或          http://www.mater-rep.com/CN/Y2020/V34/I22/22024
1 Wang Z, Li C, Domen K. Chemical Society Reviews, 2019, 48, 2109.2 Fu S, Liu X M, Yan Y H, et al. Science of the Total Environment, 2019, 694, 133756.3 Song M X, Du M, Liu Q W, et al. Catalysis Today, 2019, 335, 193.4 Zhang W J, Fu J, Wang Y, et al. Journal of Physics and Chemistry of Solids, 2019, 127, 19.5 Li S, Wang Z W, Zhao X T, et al. Chemical Engineering Journal, 2019, 360, 600.6 Huang Q S, Liu Y T, Cai T, et al. Journal of Photochemistry & Photo-biology A: Chemistry, 2019, 371, 201.7 Zhao Y, Tan X, Yu T, et al. Materials Letters, 2016, 164, 243.8 Ahmad S, Su X T, Yang C, et al. Journal of Hazardous Materials, 2019, 371, 213.9 Cao L D, Ma D K, Zhou Z L, et al. Chemical Journal, 2019, 368, 212.10 Huo Y N, Zhang J, Miao M, et al. Applied Catalysis B: Environmental, 2012, 111-112, 334.11 Tang R, Zhang H B, Shi H Z,et al. Journal of Chemical Engineering of Chinese Universities, 2019, 33(3), 748(in Chinese).汤睿, 张寒冰, 施华珍, 等.高校化学工程学报, 2019, 33(3), 748.12 Selvakumar K, Raja A, Arunpandian M, et al. Applied Surface Science, 2019, 481, 1109.13 Zhong S, Lv C, Shen M N, et al. Journal of Materials Science: Materials in Electronics, 2019, 30, 4152.14 Hu L M, Dong S Y, Li Q L, et al. Journal of Alloys and Compounds, 2015, 649, 400.15 Ye L Q, Su Y R, Jin X L, et al. Applied Surface Science, 2014, 311, 858.16 Gao S W, Guo C S, Hou S, et al. Applied Surface Science, 2014, 311, 858.17 Ni Z L, Zhang W D, Jiang G G, et al. Chinese Journal of Catalysis, 2017, 38, 1174.18 Xu C Q, Wu H H, Gu F L. Journal of Hazardous Materials, 2014, 275, 185.19 Shah K H,Ali S, Shah F, et al. Materials Research Express, 2018, 5, 96.20 Maisang W, Phuruangrat A, Randorn C, et al. Materials Science in Semiconductor Processing, 2018, 481, 319.21 Zhang D, Zhu M Y, Yu J G, et al. Transactions of Nonferrous Metals Society of China, 2017, 27, 2673.22 Yang Z Q, Tong X W, Feng J N, et al. Chemosphere, 2019, 220, 98.23 Kang Y N, Qin J, Gao Q, et al. Materials Review, 2018, 32(S1), 68 (in Chinese).亢一娜, 秦杰, 高强, 等.材料导报, 2018, 32(专辑31), 68.24 Liu K, Qin Y L, Muhammad Y, et al. Journal of Alloys and Compounds, 2019, 781, 790.25 Szostak K, Banach M. Journal of Molecular Liquids, 2019, 286, 110859.26 Horikoshi S, Saitou A, Hidaka H, et al. Environmental Science & Technology, 2003, 3, 5813.27 Li J H, Yang F, Zhou Q, et al. Journal of Colloid and Interface Science, 2019, 546, 139.28 Guo Y Q, Guo Y D, Tang D D, et al. Journal of Alloys and Compounds, 2019, 781, 1101.
[1] 于富成, 南冬梅, 宋天云, 王博龙, 许博宇, 何玲, 王姝, 段红燕. ZnO/Ag2CrO4复合物的光催化降解特性及其Z型电子传输光催化机理[J]. 材料导报, 2020, 34(8): 8003-8009.
[2] 任静, 李秀艳, 辛王鹏, 周国伟. Bi2WO6/石墨烯复合材料的制备与光催化应用研究进展[J]. 材料导报, 2020, 34(5): 5001-5007.
[3] 罗凯怡, 袁欢, 刘禹彤, 张嘉羲, 张秋平, 王笑乙, 胡文宇, 李靖, 徐明. Ag沉积的ZnO∶Cu纳米颗粒的制备及高效光催化研究[J]. 材料导报, 2020, 34(4): 4013-4019.
[4] 张瑞阳,李成金,张艾丽,周莹. 整体式光催化材料的制备及应用研究进展[J]. 材料导报, 2020, 34(3): 3001-3016.
[5] 李惠惠,张圆正,代云容,于艳新,殷立峰. 单原子光催化剂的合成、表征及在环境与能源领域的应用[J]. 材料导报, 2020, 34(3): 3056-3068.
[6] 李靖, 刘天宝, 朱亚鑫, 王鹏, 堵锡华, 张永才. 溶剂热合成可见光响应硫氮共掺杂TiO2光催化剂及其催化还原水中Cr(Ⅵ)[J]. 材料导报, 2020, 34(21): 21045-21051.
[7] 肖洒, 谈恒, 吴珊妮, 曾敏, 熊春荣. CuO/Er-Yb-TiO2的制备及在模拟可见光下催化CO2合成甲醇[J]. 材料导报, 2020, 34(2): 2005-2009.
[8] 祝一锋, 黄小钢, 朱文仙, 张攀攀, 唐华东. 原位光催化聚合制备聚(N-乙烯基咔唑)/TiO2纳米复合材料及其光催化性能[J]. 材料导报, 2020, 34(2): 2147-2152.
[9] 乔帅, 赵朝成, 贺凤婷, 赵洪飞, 董培, 林飞飞, 台兆鑫. 原位沉积法制备g-C3N4/Ag3PO4复合光催化剂降解卡马西平的性能研究[J]. 材料导报, 2020, 34(19): 19010-19017.
[10] 胡玉林, 李永进, 谢燕春, 阳生红, 张曰理. 掺Ni铁酸铋纳米粉的制备及光催化性能[J]. 材料导报, 2020, 34(18): 18009-18013.
[11] 郦雪, 张燕, 张玉琰, 宋凤娟, 赵晓涵, Akanyange Stephen Nyabire, 曹晓强, 吕宪俊. [BMIM]PF6离子液体中GO/CuO/CeO2催化剂的制备及可见光活性[J]. 材料导报, 2020, 34(18): 18019-18024.
[12] 王灿, 陈天虎, 刘海波, 董仕伟, 韩正严, 束道兵, 王汉林. 纳米矿物材料净化甲醛污染的研究进展[J]. 材料导报, 2020, 34(15): 15003-15012.
[13] 孙宇杰, 刘玉芹, 徐芬, 孙立贤. 尖晶石型金属氧化物的制备及光催化有机污染物降解:综述[J]. 材料导报, 2020, 34(15): 15021-15032.
[14] 李玉佩, 王晓静, 赵君, 胡秋月, 王利勇, 成永强. 零维/二维Bi2S3/g-C3N4异质结的原位构建及光催化性能[J]. 材料导报, 2020, 34(15): 15033-15038.
[15] 栗思琪, 鲁浈浈, 张琪. 碱金属及碱土金属掺杂石墨相-C3N4光催化材料研究进展[J]. 材料导报, 2020, 34(15): 15039-15046.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed