Please wait a minute...
材料导报  2020, Vol. 34 Issue (15): 15003-15012    https://doi.org/10.11896/cldb.19100106
  材料与可持续发展(三)一环境友好材料与环境修复材料* |
纳米矿物材料净化甲醛污染的研究进展
王灿, 陈天虎, 刘海波, 董仕伟, 韩正严, 束道兵, 王汉林
合肥工业大学资源与环境工程学院,纳米矿物与环境材料实验室,合肥230009
Research Progress on Application of Nanominerals in Formaldehyde Removal
WANG Can, CHEN Tianhu, LIU Haibo, DONG Shiwei, HAN Zhengyan, SHU Daobing, WANG Hanlin
Laboratory of Nanominerals and Environmental Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
下载:  全 文 ( PDF ) ( 4629KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 甲醛(HCHO)是主要的室内空气污染物之一,对眼睛、鼻腔、呼吸道粘膜组织具有很强的刺激性和毒性。目前,吸附法和非均相催化法是应用最广泛的甲醛净化技术。合成吸附剂如活性炭及其各种改性产品存在甲醛吸附选择性差、合成方法复杂且成本较高等问题。贵金属或过渡金属等合成催化剂虽然对甲醛具有降解效率高、不产生毒副产物等优势,但贵金属价格昂贵,过渡金属催化剂也常需热源才能完全降解甲醛,这限制了其广泛应用。随着对纳米矿物材料环境属性的认识不断加深,纳米矿物材料凭借其天然多孔结构、化学稳定性高、表面酸碱性质可调、资源丰富、价格低廉、处理简单等特性,在甲醛净化中具有潜在的优势。然而,不同种类的纳米矿物材料结构与性质也存在差异,因此其对甲醛的吸附或催化反应活性与作用机制也各不相同。
天然硅酸盐类纳米矿物材料如海泡石、凹凸棒石、蒙脱石等由于表面具有酸性位点和较高的表面积,对强极性甲醛分子具有一定的吸附能力。然而,未经处理的天然环境中矿物材料存在吸附选择性差、杂质含量多、孔隙少、表面活性官能团数量少等问题,需要对其进行改性处理。目前,天然纳米矿物吸附剂的改性方法主要有酸处理、焙烧活化和引入有机官能团等。酸、热改性可改善纳米矿物如凹凸棒石、硅藻土的表面酸性,增加其孔隙和孔道开放度,从而增大比表面积。在矿物表面引入氨基等有机官能团可将对甲醛的物理吸附转化为化学吸附,并将甲醛矿化为亚胺类物质。合成纳米矿物吸附剂如沸石分子筛具有孔道结构可调、表面积大等特点,也被广泛应用于甲醛的吸附处理,但是甲醛与水汽存在竞争性吸附,且其抗水性能差,这限制了该类材料的进一步应用。
相比于吸附法处理甲醛,非均相催化法如光催化、催化氧化可直接将甲醛转化为二氧化碳和水,具有更加广阔的应用前景。羟基磷灰石、水钠锰矿等纳米矿物对甲醛具有一定催化氧化作用,通过掺杂金属元素、调控其结构与形貌可进一步提高其对甲醛的催化氧化能力。纳米黏土矿物如凹凸棒石、海泡石可作为载体与贵金属、过渡金属、纳米二氧化钛等活性组分复合,从而改善活性组分的分散性,提供反应羟基等活性位点,显著提升复合矿物材料的催化性能,在低温乃至室温下就可将甲醛完全降解。
本文综述了各种纳米矿物材料在吸附和非均相催化降解室内空气和部分水体中甲醛的研究进展,系统比较了纳米矿物材料对甲醛的吸附、催化性能、反应机理,指出了该材料目前研究存在的问题,并对其今后的发展趋势进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王灿
陈天虎
刘海波
董仕伟
韩正严
束道兵
王汉林
关键词:  纳米矿物  甲醛  吸附  催化氧化  光催化    
Abstract: Formaldehyde is the major indoor pollutant due to its respiratory tract irritation and human toxicity. The conventional formaldehyde removal technology includes adsorption and heterogeneous catalytic oxidation.Synthetic adsorbents such as activated carbon and its various modified products have some defects of poor formaldehyde adsorption selectivity, complicated synthesis methods, and high cost. Synthetic catalysts such as precious metals or transition metals have the advantages of high catalyticactivity of formaldehyde and no toxic by-products, but, the precious metals are expensive,and the transition metal catalysts commonly require a heat source, which limits their wide application. With the deepening of understanding on the environmental properties of nanominerals in recently years, the nanominerals with the advantages of natural porous structure, chemical stability, adjustable surface acidity, abundant resources, low price, and easy handling have potential applications on removal of HCHO.However, the nanomineral materials with different structures and properties have a various function and reaction mechanism for HCHO removal.
The acid sites and high specific surface area enhanced the adsorption performance of natural silicate nanominerals (e.g., sepiolite, palygorskite, and montmorillonite). However, poor adsorption selectivity, high impurity content, low porosity and surface-active functional groups of silicate nanominerals restricted their further development. The primary modification methods of nanomineral mainly include acid,thermal activation, and the introduction of organic functional groups. Acid and thermal activation can improve the acidity,pore structure, and the specific surface area of nanominerals, such as palygorskite and diatomite. The absorbed formaldehyde can be mineralized on the absorbent surface by the introduction of amino groups. Zeolite molecular sieves are also widely used in formaldehyde adsorption due to their controllable pore structure and large surface area. However, water vapor adsorbs competitively with HCHO molecules on active sites and suppress the performance for formaldehyde removal, and hence limited the applicability of zeolite molecular.
Compared with the adsorption method for processing formaldehyde, heterogeneous catalytic methods such as photocatalysis and catalytic oxidation can directly convert formaldehyde into carbon dioxide and water, and have a broader application prospect. Nanominerals such as hydroxyapatite and bimanganite have a certain catalytic oxidation effect on formaldehyde. By doping metal elements and adjusting their structure and morphology, their catalytic oxidation capacity for formaldehyde can be further improved. Nanominerals such as palygorskite and sepiolite as carriers compounded with precious metals, transition metals, or nano-titanium dioxide can improve the distribution of active components, provide more active sites such as reactive hydroxyl groups and significantly improve the catalytic performance of composite mineral materials. The above-mentioned composite minerals catalysts even can catalytic oxidation of formaldehyde at ambient temperature.
The research progress of adsorption and heterogeneous catalytic oxidation of formaldehyde by nanominerals is reviewed, the formaldehyde removal performance, reaction mechanism, and current problems are investigated. Finally, the application of nanominerals for formaldehyde remo-val based on achievements is proposed.
Key words:  nanominerals    formaldehyde    adsorption    catalytic oxidation    photocatalysis
               出版日期:  2020-08-10      发布日期:  2020-07-14
ZTFLH:  X50  
通讯作者:  chentianhu@hfut.edu.cn   
作者简介:  王灿,2018年于合肥工业大学院获得环境工程专业硕士学位。现为合肥工业大学资源与环境学院在读博士研究生,在陈天虎教授的指导下进行研究,目前的主要研究领域为纳米矿物与环境材料。
陈天虎,合肥工业大学教授,博士研究生导师。1984年毕业于南京大学地球科学系,获学士学位;1987年毕业于合肥工业大学,获硕士学位,2003年5月博士毕业。2001年8月—2002年8月在美国新墨西哥大学开展国际合作研究,2004年9月至2005年1月在美国威斯康辛大学开展国际合作。主要研究方向为纳米矿物与环境材料。现任纳米矿物与污染控制安徽省高校实验室主任;中国地质学会纳米地质专业委员会副主任委员、矿物学专业委员会委员;《地球化学》副主编,《硅酸盐学报》《生物学杂志》《矿物岩石地球化学通报》编委。承担和完成国家自然科学基金重点项目、面上项目、863探索项目、973预研级和其他省部级项目共16项。已获授权发明专利87项,已实施成果转化12项,在科学出版社出版专著2部,发表论文共380篇,获国家发明二等奖和其他省部级奖项共12项。
引用本文:    
王灿, 陈天虎, 刘海波, 董仕伟, 韩正严, 束道兵, 王汉林. 纳米矿物材料净化甲醛污染的研究进展[J]. 材料导报, 2020, 34(15): 15003-15012.
WANG Can, CHEN Tianhu, LIU Haibo, DONG Shiwei, HAN Zhengyan, SHU Daobing, WANG Hanlin. Research Progress on Application of Nanominerals in Formaldehyde Removal. Materials Reports, 2020, 34(15): 15003-15012.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19100106  或          http://www.mater-rep.com/CN/Y2020/V34/I15/15003
1 Liu L, Yu X, Dong X, et al.Procedia Engineering, 2017, 205, 1535.2 Gonzalez-Gil G, Kleerebezem R, van Aelst A, et al.Water Science and Technology, 1999, 40(8), 195.3 Xing B, Yang G, Chen H, et al.Reaction Kinetics, Mechanisms and Catalysis, 2019, 126(1), 547.4 Salthammer T, Mentese S, Marutzky R.Chemical Reviews, 2010, 110(4), 2536.5 Du X, Caiting L, Lingkui Z, et al.Applied Catalysis B Environmental, 2018, 232, 37.6 Na C, Yoo M, Tsang D C W, et al.Journal of Hazardous Materials, 2019, 366, 452.7 Guimarães J R, Turato Farah C R, Maniero M G, et al.Journal of Environmental Management, 2012, 107, 96.8 Tang X, Bai Y, Duong A, et al.Environment International, 2009, 35(8), 1210.9 Hochella M F.Earth & Planetary Science Letters, 2002, 203(2), 605.10 Chen T H, Xie Q Q, Liu H B, et al.Earth Science, 2018, 43(5), 1439 (in Chinese).陈天虎,谢巧勤,刘海波,等.地球科学, 2018, 43(5), 1439.11 Liu J, Shen A X, Liu F, et al.Earth Science, 2018, 43(5), 1450 (in Chinese).刘娟,盛安旭,刘枫,等.地球科学, 2018, 43(5), 1450.12 Wang C, Zou X, Liu H, et al.Applied Surface Science, 2019, 486, 420.13 Du Y, Tang D, Zhang G, et al.Chinese Journal of Catalysis, 2015, 36(12), 2219.14 Lin F, Zhu G, Shen Y, et al.Applied Surface Science, 2015, 356, 150.15 Chen Y, Chen T H, Chen D, et al. Acta Petrologica et Mineralogica, 2013(6), 818 (in Chinese).陈轶,陈天虎,陈冬,等.岩石矿物学杂志, 2013(6), 818.16 Bellat J, Bezverkhyy I, Weber G, et al.Journal of Hazardous Materials, 2015, 300, 711.17 Selvakumara S, Nunsa N, Trentesaux M, et al. Applied Catalysis B Environmental, 2018, 223, 192.18 Hu M, Yao Z, Liu X, et al. Journal of the Taiwan (China) Institute of Chemical Engineers, 2018, 85, 91.19 Xu J, White T, Li P, et al.Journal of the American Chemical Society, 2010, 132(38), 13172.20 Ezzatahmadi N, Ayoko G A, Millar G J, et al.Chemical Engineering Journal, 2017, 312, 336.21 Chen T H, Xun X C, Yue S C.Nanometer mineralogy and geochemistry of palygorskite clays in the border of Jiangsu and Anhui provinces, Science Press, China, 2004 (in Chinese).陈天虎,徐晓春,岳书仓.苏皖地区凹凸棒石黏土纳米矿物学及地球化学, 科学出版社, 2004.22 Zou X H, Chen T H, Zhang P, et al. Applied Energy, 2018, 226, 827.23 Zhang P. The preparation of modified palygorskite materials and their adsorption performance for the volatile organic compounds. Ph.D. Thesis, Guangzhou Institute of Geochemistry, China, 2017 (in Chinese).张萍. 坡缕石改性材料制备及其对挥发性有机污染物的吸附. 博士学位论文, 广州地球化学研究所,2017.24 Wang Y J, Ding H, Yang J P. Chemical Engineering Design Communications, 2018(10), 139 (in Chinese).王艺洁,丁红,杨家萍.化工设计通讯, 2018(10), 139.25 Li L, Wang Q N, Chen X F, et al.Acta Scientiae Circumstantiae, 2012(7), 1736 (in Chinese).李澜,王青宁,陈学福,等.环境科学学报, 2012(7), 1736.26 Zhang T, He Y.Non-Metallic Mines, 2016(4), 46 (in Chinese).张韬, 贺洋. 非金属矿, 2016(4), 46.27 Wang J H, Zhang M L, Xu Y S, et al.Bulletin of the Chinese Ceramic Society, 2017(6), 2162 (in Chinese).王今华,张茂亮,徐元盛,等.硅酸盐通报, 2017(6), 2162.28 Kulikauskaite· D, Paliulis D.Mokslas-Lietuvos Ateitis, 2015, 7(4), 443.29 Paliulis D.Polish Journal of Environmental Studies, 2016, 25(1), 251.30 Zhen S L, Sun Z M, Hu Z B, et al.Geoscience Frontiers, 2014, 21(5), 274 (in Chinese).郑水林,孙志明,胡志波,等.地学前缘, 2014, 21(5), 274.31 Liu Y, Jia H, Sun Z, et al.Chemical Physics Letters, 2019, 722, 32.32 Yu C L, Quan H E, Kang Y.Acta Scientiae Circumstantiae, 2012, 32(1), 116 (in Chinese).俞成林,权红恩,康勇.环境科学学报, 2012, 32(1), 116.33 Wang X, An L P, Zhang X T, et al.Materials Reports A:Reviews Papers, 2018, 32(1), 93 (in Chinese).王霞,安丽平,张晓涛,等.材料导报: 综述篇, 2018, 32(1), 93.34 Bellat J, Bezverkhyy I, Weber G, et al.Journal of Hazardous Materials, 2015, 300, 711.35 Pei J, Zhang J S.Chemical Engineering Journal, 2011, 167(1), 59.36 Bellat J, Weber G, Bezverkhyy I, et al. Microporous and Mesoporous Materials, 2019, 288, 109563.37 Liu Y, Zhen S L, Zhang X W, et al.Non-Metallic Mines, 2016, 39(6), 72 (in Chinese).刘杨,郑水林,张祥伟,等.非金属矿, 2016, 39(6), 72.38 Wang J, Zhen S L.Non-Metallic Mines, 2011(6), 72 (in Chinese).王佼,郑水林.非金属矿, 2011(6), 72.39 Lei C S, Zhu X F.Chinese Journal of Environmental Engineering, 2016, 10(10), 5743 (in Chinese).雷春生,朱晓峰.环境工程学报, 2016, 10(10), 5743.40 Akihiro N, Jones C W.Chemistry-A European Journal, 2014, 20(21), 6381.41 Abdunaser M, Ewlad-Ahmed, Michael A. Morris et al.Environment Science Technology, 2016,46, 13354.42 Liu Y, Jia H, Li C, et al.Environmental Science and Pollution Research, 2019, 26(24), 25130.43 Lei C S, Zhu X F.Environmental Engineering, 2016(6), 95 (in Chinese).雷春生,朱晓峰.环境工程, 2016(6), 95.44 Fu M, Wang R F, Zhao X B, et al.Journal of Functional Materials, 2009, 40(8), 1322 (in Chinese).付猛,王荣飞,赵晓兵,等.功能材料, 2009, 40(8), 1322.45 Yang H, Sun X, Liu S, et al. Chemistry Select, 2016, 1(10), 2181.46 Wang X, Wu S M, Wan Y, et al.Non-Metallic Mines, 2019(1), 104 (in Chinese).王鑫,吴诗敏,万弋,等.非金属矿, 2019(1), 104.47 Wang R F, Fu M, Zhao X B, et al.Journal of Jiangsu Polytechnic University, 2009, 21(2), 11 (in Chinese).王荣飞,付猛,赵晓兵,等.江苏工业学院学报, 2009, 21(2), 11.48 Miao L, Wang J, Zhang P.Applied Surface Science, 2019, 466, 441.49 Wang J, Zhang P, Li J, et al. Environmental Science & Technology, 2015, 49(20), 12372.50 Rong S, Zhang P, Wang J, et al.Chemical Engineering Journal, 2016, 306, 1172.51 Rong S, Li K, Zhang P, et al.Catalysis Science & Technology, 2018, 8(7), 1799.52 Wang J, Li D, Li P, et al.RSC Advances, 2015, 5(122), 100434.53 Wang J, Li J, Jiang C L, et al.Applied Catalysis B Environmental, 2017, 204, 147.54 Fang L, Rong S, Zhang P, et al.Applied Catalysis B Environmental, 2018, 235, 158.55 Lin Z, Wang J, Rong S, et al.Applied Catalysis B Environmental, 2017, 211, 212.56 Fang R, Huang H, Jian J, et al.Chemical Engineering Journal, DOI:10.1016/j-cej.2017.11.176.57 Zou N, Nie Q, Zhang X, et al.Chemical Engineering Journal, 2019, 357, 1.58 Sun Y, Qu Z, Dan C, et al. Chinese Journal of Catalysis, 2014, 35(12), 1927.59 Qu Z, Sun Y, Chen D, et al.Journal of Molecular Catalysis A: Chemical, 2014, 393, 182.60 Wang Y, Chen B, Crocker M, et al.Catalysis Communications, 2015, 59, 195.61 Zhang C, Liu F, Zhai Y, et al.Angewandte Chemie International Edition, 2012, 51(38), 9628.62 Chen J S, Ding J J, Li H Q, et al. Catalytic Science Technology, 2019, 9, 3287.63 Yan Z X, Xu Z H, Yu J G, et al. Environmental Science & Technology, 2015, 49(11), 6637.64 Chen Y, He J H, Tian H, et al.Chemistry Bulletin, 2015(3), 231 (in Chinese).陈莹,贺军辉,田华,等.化学通报, 2015(3), 231.65 Gao X, Guo Q, Zhou Y, et al.Journal of Chemistry, DOI:10.1155/2019/4582137.66 Ma Y, Zhang G.Chemical Engineering Journal, 2016, 288, 70.67 Liu P, Wei G, Liang X, et al. Applied Clay Science, 2018, 161, 265.68 Liu P, He H P, Wei G L, et al. Applied Catalysis B Environmental, 2016, 182, 476.69 Lu L, Tian H, He J H, et al. Journal of Physical Chemistry C, 2016,120,23660.70 Bai B Y, Qiao Q,Arandiyan H, et al. Environment Science Technology, 2016,50,2635.71 Zhang J H, Li Y, Zhang M, etal. Science Report,2015,5,12950.72 Wang C, Chen T H, Liu H B, et al. Applied Clay Science, 2019, 182, 105289.73 Wang C, Liu H B, Chen T H, et al. Applied Clay Science, 2018, 159, 50.74 Wei G, Liu P, Chen D, et al.Applied Clay Science, 2019, 182, 105280.75 Liu P, Wei G, He H, et al.Applied Surface Science, 2019, 464, 287.76 Wang J L, Yunus R, Li J, et al.Applied Surface Science, 2015,357,787.77 Li J, Zhang J, Wang J L, et al.Journal of Physical Chemistry C, 2016,120,24121.78 Portela R, Jansson I, Suárez S, et al.Chemical Engineering Journal, 2017, 310, 560.79 Zhang G, Sun Z, Duan Y, et al.Applied Surface Science, 2017, 412, 105.80 He Y, Zheng S L, Shen H L.Non-Metallic Mines, 2010, 33(1), 67 (in Chinese).贺洋,郑水林,沈红玲.非金属矿, 2010, 33(1), 67.81 Du Y, Tang D, Zhang G, et al. Chinese Journal of Catalysis, 2015, 36(12), 2219.82 Liu Y S, Ren Y L, Meng C F.Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2018(4), 583 (in Chinese).刘雅淑,任亦龙,孟春凤.江苏科技大学学报(自然科学版), 2018(4), 583.83 Saulich K, Müller S. Journal of Physics D: Applied Physics, 2013, 46(4),045201.84 Gao R Q, Gu Y M, Cao X, et al.Journal of Light Industry, 2018, 33(2), 7 (in Chinese).高如琴,谷一鸣,曹行,等.轻工学报, 2018, 33(2), 7.85 Wang L, Ju X C, Hu M, et al. Acta Scientiarum Naturalium Universitatis Pekinensis, 2018, 54 (3), 585(in Chinese).王玲,居学成,胡敏,等. 北京大学学报(自然科学版), 2018, 54 (3), 585.
[1] 张莉. 碳纳米管的吸附性能及对水中污染物的吸附:综述[J]. 材料导报, 2020, 34(Z1): 72-77.
[2] 黄江锋, 刘鸿, 刘启斌, 韦康, 白家峰, 王弘, 黄宇亮, 韦祎, 兰柳妮, 冯守爱. 石墨烯-纳米SiO2气凝胶对巴豆醛的吸附性研究[J]. 材料导报, 2020, 34(Z1): 82-85.
[3] 周文娟, 谢谦, 赵磊. 再生微粉对聚羧酸减水剂的吸附性能研究[J]. 材料导报, 2020, 34(Z1): 246-248.
[4] 李世杰, 黄慧娟, 文世涛, 马建锋, 刘杏娥. 负载型贵金属催化剂氧化分解甲醛的研究进展[J]. 材料导报, 2020, 34(Z1): 400-407.
[5] 魏俊富, 张天烨, 辛卓含, 王智航, 张丽. 水体中芳香类有机化合物吸附材料的研究进展[J]. 材料导报, 2020, 34(Z1): 527-530.
[6] 赵智煌, 何梦雅, 钱建华, 马良, 冯伯文. 柱状活性炭与酸改性球形活性炭对甲苯的吸附研究[J]. 材料导报, 2020, 34(Z1): 531-534.
[7] 李鸣明, 詹世平, 宫蕾. 壳聚糖/明胶复合微球的制备及对铬离子的吸附性能[J]. 材料导报, 2020, 34(Z1): 535-538.
[8] 张文娟, 费玉龙, 王有良, 张波波, 马晓凯. 磁性聚苯胺复合材料对工业废水中重金属吸附的研究进展[J]. 材料导报, 2020, 34(9): 9012-9018.
[9] 于富成, 南冬梅, 宋天云, 王博龙, 许博宇, 何玲, 王姝, 段红燕. ZnO/Ag2CrO4复合物的光催化降解特性及其Z型电子传输光催化机理[J]. 材料导报, 2020, 34(8): 8003-8009.
[10] 贾子龙, 刘志红, 宋杨, 范晓东. Zr改性磷石膏/粉煤灰复合材料对选矿废水中油酸钠的吸附[J]. 材料导报, 2020, 34(7): 7015-7019.
[11] 曹新鑫, 李福昌. 石墨烯气凝胶的废水吸附性能研究进展[J]. 材料导报, 2020, 34(7): 7020-7025.
[12] 戴俊, 钱春香, 陈竞, 庞忠华. 无水乙酸钠对磷酸钾镁水泥水化性能和微观形貌的影响[J]. 材料导报, 2020, 34(6): 6066-6074.
[13] 任静, 李秀艳, 辛王鹏, 周国伟. Bi2WO6/石墨烯复合材料的制备与光催化应用研究进展[J]. 材料导报, 2020, 34(5): 5001-5007.
[14] 王蓝青, 钟溢健, 陈南春, 解庆林. 溶胶-凝胶法制备离子印迹聚合物及其用于选择性吸附重金属离子的综述[J]. 材料导报, 2020, 34(5): 5016-5022.
[15] 肖江, 周书葵, 刘星, 储陆平, 张建, 李智东, 田林玉, 李嘉丽. 层状双金属氢氧化物及其复合材料去除水体中重金属离子的研究进展[J]. 材料导报, 2020, 34(5): 5023-5031.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed