Please wait a minute...
材料导报  2020, Vol. 34 Issue (5): 5001-5007    https://doi.org/10.11896/cldb.19020029
  材料与可持续发展(三)——环境友好材料与修复材料 |
Bi2WO6/石墨烯复合材料的制备与光催化应用研究进展
任静1, 李秀艳1,2, 辛王鹏1, 周国伟1
1 齐鲁工业大学(山东省科学院)化学与制药工程学院,山东省高校轻工精细化学品重点实验室,济南 250353;
2 潍坊科技学院化工与环境学院,山东半岛卤水资源高值化绿色化综合利用工程技术研发中心,潍坊 262700
Progress on the Preparation and Application in Photocatalysis of Bi2WO6/Graphene Composites
REN Jing1, LI Xiuyan1,2, XIN Wangpeng1, ZHOU Guowei1
1 Key Laboratory of Fine Chemicals in Universities of Shandong, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China;
2 Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, School of Chemical Engineering and Environment, Weifang University of Science and Technology, Weifang 262700, China
下载:  全 文 ( PDF ) ( 2552KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 光催化太阳能转换被认为是解决日益严重的能源短缺和环境污染问题的有效途径。因此,探索一种具有优异光催化活性和良好循环性能的新型光催化剂对光催化技术的发展具有重要意义。Bi2WO6是最简单的Aurivillius型氧化物,是一种重要的n型半导体材料,具有优异的可见光响应光催化性能,有望应用于有机污染物的降解。然而,单组分Bi2WO6存在光生电子-空穴对复合效率高、可见光吸收能力不足等缺点,阻碍了其光催化性能的提高。将石墨烯、碳量子点、TiO2等其他材料与Bi2WO6复合,成为解决上述问题的一种有效办法。
  在众多选择中,石墨烯凭借优异的电化学性质而引起了极大的关注。石墨烯是一种由碳原子以sp2杂化轨道组成的呈六角型蜂巢晶格的新型二维纳米材料,具有优良的导电性和光学性能。当石墨烯与Bi2WO6复合后,带来的性能提升主要有:(1)其优异的电子传导能力促进了电荷转移,抑制了光生电子-空穴对的重组;(2)基于石墨烯具有大的π共轭体系和二维平面结构,具有共轭体系的小分子或高分子污染物可通过π-π相互作用很容易地吸附在石墨烯表面上,这有利于催化反应的发生与进行;(3)石墨烯优良的光学性能可增强复合材料的可见光吸收。
  目前,用来制备Bi2WO6/石墨烯复合材料的方法主要有:水热法、溶剂热法、超声波化学合成法等。水热法经济实用,应用最为广泛。溶剂热法因能够利用非水介质的一些特性完成许多在水溶液条件下无法进行的反应而广受青睐。超声波化学合成法凭借独特的声空化效应,在近些年的研究中崭露头角。
  本文以Bi2WO6/石墨烯复合材料的制备方法为分类依据,将其分为水热法、溶剂热法、超声波化学合成法及其他制备方法四类,逐一进行分析、介绍,简述了复合材料的光催化增强机制,概述了复合材料在光催化领域的具体应用,并对Bi2WO6/石墨烯复合材料的制备与应用进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
任静
李秀艳
辛王鹏
周国伟
关键词:  Bi2WO6  石墨烯  复合材料  光催化  能源短缺  环境污染    
Abstract: Photocatalytic solar energy conversion has been regarded as an effective approach to address the increasing energy shortage and environmental pollution issues. Therefore, it is imperative to explore novel photocatalysts owning preferable photocatalytic activity and excellent cyclic performance for the development of photocatalytic technologies. As one of the simplest Aurivillius type oxides, Bi2WO6 is an important n-type semiconductor material, which exhibits excellent visible-light response photocatalytic performance and has been highly desired for organic pollutants degradation under solar irradiation. However, bare Bi2WO6 has drawbacks of high recombination efficiency of photogenerated electron-hole pairs and limited visible light absorption ability, which hinder the enhancement of photocatalytic performance. To solve these problems, it is an effective solution to couple graphene, carbon quantum dots, TiO2 and other materials with Bi2WO6.
  Graphene has recently attracted tremendous attention owing to its fascinating electrical and chemical properties. Graphene is a new type of two-dimensional nanomaterials with hexagonal honeycomb lattice composed of carbon atoms with sp2 hybrid orbitals, which has excellent electrical and optical properties. The main performance improvements after Bi2WO6 coupled with graphene are as follows: i. The excellent electronic conductivity of graphene will promote the charge transfer through its conjugated structure, inhibiting the recombination of the photogenerated electron-hole pairs. ii. Based on the fact that graphene has a large π-conjugated bonding system and a two-dimensional plane structure, small molecules or high molecular pollutants with conjugated bonding systems can easily be adsorbed on the surface of graphene through π-π interaction, which is beneficial to the catalytic reaction. iii. The excellent optical properties of graphene can enhance the visible-light absorption of the composites.
  At present, hydrothermal, solvothermal and ultrasonic chemical synthesis methods are the most common methods for preparing Bi2WO6/graphene composites. Hydrothermal method is both economical and practical, which has been widely used. Solvothermal method utilize certain properties of non-aqueous medium to implement many reactions which cannot be carried out in aqueous solution. Ultrasonic chemical synthesis method attracts widely attention in recent years because of its unique acoustic cavitation effect.
  In this paper, the preparation method of Bi2WO6/graphene composites is classified into four categories: hydrothermal method, solvothermal method, ultrasonic chemical synthesis and other synthetic methods. The photocatalytic enhancement mechanism of composites are briefly described. The specific application of composites in photocatalysis are summarized and the preparation and application of Bi2WO6/graphene composites are prospected.
Key words:  Bi2WO6    graphene    composite    photocatalysis    energy shortage    environmental pollution
               出版日期:  2020-03-10      发布日期:  2020-01-16
ZTFLH:  TB33  
基金资助: 国家自然科学基金(51572124)
通讯作者:  guoweizhou@hotmail.com; gwzhou@qlu.edu.cn   
作者简介:  任静,2018年6月毕业于齐鲁工业大学,获得工学学士学位。现为齐鲁工业大学(山东省科学院)化学与制药工程学院研究生,在周国伟教授的指导下进行研究。目前主要研究领域为纳米复合光催化材料;周国伟,博士,教授,博士生导师,山东省有突出贡献中青年专家,享受国务院政府特殊津贴。2002和2005年分别在韩国釜庆大学和香港科技大学从事博士后研究。主要从事介孔材料的可控制备及在催化、能源存储与转化等领域的研究。主持国家自然科学基金3项,在 Chemical Communications, Journal of Materials Chemistry, Chemical Engineering Journal等期刊上发表SCI收录论文90余篇。曾获山东省科学技术奖二等奖等奖励,获国家授权发明专利30余项。
引用本文:    
任静, 李秀艳, 辛王鹏, 周国伟. Bi2WO6/石墨烯复合材料的制备与光催化应用研究进展[J]. 材料导报, 2020, 34(5): 5001-5007.
REN Jing, LI Xiuyan, XIN Wangpeng, ZHOU Guowei. Progress on the Preparation and Application in Photocatalysis of Bi2WO6/Graphene Composites. Materials Reports, 2020, 34(5): 5001-5007.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19020029  或          http://www.mater-rep.com/CN/Y2020/V34/I5/5001
1 Cao S W, Shen B J, Tong T, et al. Advanced Functional Materials, 2018, 28(21), 1800136.
2 Di J, Chen C, Zhu C, et al. Applied Catalysis B: Environmental, 2018, 238, 119.
3 Zhang K, Wang J, Jiang W J, et al. Applied Catalysis B: Environmental, 2018, 232, 175.
4 Jiang Z Y, Liang X Z, Zheng H L, et al. Applied Catalysis B: Environmental, 2017, 219, 209.
5 Zargazi M, Entezari M H. Applied Catalysis B: Environmental, 2019, 242, 507.
6 Zhang N, Ciriminna R, Pagliaro M, et al. Chemical Society Reviews, 2014, 43(15), 5276.
7 Zhang G, Hu Z Y, Sun M, et al. Advanced Functional Materials, 2015, 25(24), 3726.
8 Li C M, Chen G, Sun J X, et al. ACS Applied Materials & Interfaces, 2015, 7(46), 25716.
9 Wang J J, Tang L, Zeng G M, et al. Applied Catalysis B: Environmental, 2018, 222, 115.
10 Yang J J, Chen D M, Zhu Y, et al. Applied Catalysis B: Environmental, 2017, 205, 228.
11 Yuan L, Weng B, Colmenares J C, et al. Small, 2017, 13(48), 1702253.
12 Ozer L Y, Garlisi C, Oladipo H, et al. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2017, 33, 132.
13 Xu X, Ming F W, Hong J Q, et al. Materials Letters, 2016, 179, 52.
14 Yang J, Wang X H, Zhao X L, et al. The Journal of Physical Chemistry C, 2015, 119(6), 3068.
15 Lyu H, Liu Y M, Hu J Y, et al. RSC Advances, 2014, 4(108), 63238.
16 Zheng H J, Yang G, Chen S M, et al. ChemElectroChem, 2017, 4(3), 577.
17 Wu H J, Zhu D S, Xiang L. New Chemical Materials, 2005, 33(8), 1(in Chinese).
吴会军, 朱冬生, 向兰. 化工新型材料, 2005, 33(8), 1.
18 Li Y K, Chen L, Wang Y, et al. Materials Science and Engineering: B, 2016, 210, 29.
19 Zhou Y, Zhang X J, Zhang Q, et al. Journal of Materials Chemistry A, 2014, 2(39), 16623.
20 Liu R R, Li X Y, Li S C, et al. Catalysis Today, 2017, 297, 264.
21 Sulick K S. Science, 1990, 247(4949), 1439.
22 Deng C H, Hu H M, Huang X H. Chinese Journal of Inorganic Chemistry, 2009, 25(3), 469(in Chinese).
邓崇海, 胡寒梅, 黄显怀. 无机化学学报, 2009, 25(3), 469.
23 Zhang Y, Xiao L B, Xu K Z, et al. RSC Advances, 2016, 6(48), 42428.
24 Sun Z H, Guo J J, Zhu S M, et al. Nanoscale, 2014, 6(4), 2186.
25 Sun Z H, Guo J J, Zhu S M, et al. RSC Advances, 2014, 4(53), 27963.
26 Zhai J L, Yu H W, Li H Y, et al. Applied Surface Science, 2015, 344, 101.
27 Zhu Z L, Ren Y L, Li Q, et al. Ceramics International, 2018, 44(3), 3511.
28 Zhao J, Yang Y, Dong X T, et al. RSC Advances, 2016, 6(69), 64741.
29 Rajaji U, Govindasamy M, Chen S M, et al. Composites Part B: Engineering, 2018, 152, 220.
30 Che H N, Liu C B, Hu W, et al. Catalysis Science & Technology, 2018, 8(2), 622.
31 Dong H, Yin Y Y, Guo X T. Environmental Science and Pollution Research, 2018, 25(12), 11754.
32 Zhou Y, Ren S S, Dong Q M, et al. RSC Advances, 2016, 6(105), 102875.
33 Liu M, Xue X, Yu S S, et al. Scientific Reports, 2017, 7(1), 3637.
34 Lv N, Li Y Y, Huang Z L, et al. Applied Catalysis B: Environmental, 2019, 246, 303.
35 Jo W K, Kumar S, Eslava S, et al. Applied Catalysis B: Environmental, 2018, 239, 586.
36 Ma D, Wu J, Gao M C, et al. Chemical Engineering Journal, 2016, 290, 136.
37 Zhang C M, Chen G, Li C M, et al. ACS Sustainable Chemistry & Engineering, 2016, 4(11), 5936.
38 Wang Y Y, Wang J X, Shen H Q, et al. Nano, 2017, 12(12), 1750149.
39 Chang C J, Wang C W, Wei Y H, et al. International Journal of Hydrogen Energy, 2018, 43(24), 11345.
40 Hu K, Chen C Y, Zhu Y, et al. Journal of Colloid and Interface Science, 2019, 540, 115.
41 Li Y K, Zhu L. Applied Polymer Science, 2017, 134(42), 45426.
42 Ramezanalizadeh H, Manteghi F. Journal of Cleaner Production, 2018, 172, 2655.
43 Wang H, Liang Y H, Liu L, et al. Applied Catalysis B: Environmental, 2017, 208, 22.
44 Liang Y H, Lin S L, Liu L, et al. Applied Catalysis B: Environmental, 2015, 164, 192.
45 Cui W Q, An W J, Liu L, et al. Journal of Hazardous Materials, 2014, 280, 417.
46 Wang H, Wu Y, Feng M B, et al. Water Research, 2018, 144, 215.
47 Pi Y H, Li X Y, Xia Q B, et al. Chemical Engineering Journal, 2018, 337, 351.
48 Li Y, Cui W Q, Liu L, et al. Applied Catalysis B: Environmental, 2016, 199, 412.
49 Berenguer R, Sieben J M, Quijada C, et al. Applied Catalysis B: Environmental, 2016, 199, 394.
50 Chen F Y, An W J, Liu L, et al. Applied Catalysis B: Environmental, 2017, 217, 65.
51 Zhang Y, Cui W Q, An W J, et al. Applied Catalysis B: Environmental, 2018, 221, 36.
52 Ma H W, Shen J F, Shi M, et al. Applied Catalysis B: Environmental, 2012, 121-122, 198.
53 Yu Y, Liu Y, Wu X Q, et al. Separation and Purification Technology, 2015, 142, 1.
54 Zhang K, Wang L Y, Kim J K, et al. Energy & Environmental Science, 2016, 9(2), 499.
55 Liu J, Liu Y, Liu N Y, et al. Science, 2015, 347(6225), 970.
56 Wei R B, Huang Z L, Gu G H, et al. Applied Catalysis B: Environmental, 2018, 231, 101.
57 Jha R, Dulikravich G S, Chakraborti N, et al. Journal of Alloys and Compounds, 2016, 682, 454.
58 Fan M, Liu Y, Jha R, et al. Journal of Magnetism and Magnetic Mate-rials, 2016, 420, 296.
59 Zaddach A J, Niu C, Oni A A, et al. Intermetallics, 2016, 68, 107.
60 Wang L, Sun B, Wang W, et al. Asia-Pacific Journal of Chemical Engineering, 2017, 12(1), 121.
61 Sun C F, Wang Y B, Su Q. Chemical Physics Letters, 2018, 702, 49.
62 Yu Z, Yin B S, Qu F Y, et al. Chemical Engineering Journal, 2014, 258, 203.
63 Xu S C, Pan S S, Xu Y, et al. Journal of Hazardous Materials, 2015, 283, 7.
64 Bai X, Du Y Y, Hu X Y, et al. Applied Catalysis B: Environmental, 2018, 239, 204.
65 Chen C S, Cao S Y, Yu W W, et al. Vacuum, 2015, 116, 48.
[1] 何延如, 田小让, 赵冠超, 代玲玲, 聂革, 刘敏胜. 石墨烯薄膜的制备方法及应用研究进展[J]. 材料导报, 2020, 34(5): 5048-5060.
[2] 薛耀辉, 蒋军彪, 张辉, 文昌秀, 苏宗锋, 崔晓霞, 郭海涛. 低膨胀β-锂霞石基复合材料的研究现状与进展[J]. 材料导报, 2020, 34(5): 5068-5077.
[3] 张美云, 罗晶晶, 杨斌, 刘国栋, 宋顺喜. 芳纶纳米纤维的制备及应用研究进展[J]. 材料导报, 2020, 34(5): 5158-5166.
[4] 罗凯怡, 袁欢, 刘禹彤, 张嘉羲, 张秋平, 王笑乙, 胡文宇, 李靖, 徐明. Ag沉积的ZnO∶Cu纳米颗粒的制备及高效光催化研究[J]. 材料导报, 2020, 34(4): 4013-4019.
[5] 张恒, 周玉惠, 张飞, 龚维, 何力. 聚丙烯/β-环糊精复合材料发泡性能及力学性能的研究[J]. 材料导报, 2020, 34(4): 4148-4152.
[6] 张瑞阳, 李成金, 张艾丽, 周莹. 整体式光催化材料的制备及应用研究进展[J]. 材料导报, 2020, 34(3): 3001-3016.
[7] 李惠惠,张圆正,代云容,于艳新,殷立峰. 单原子光催化剂的合成、表征及在环境与能源领域的应用[J]. 材料导报, 2020, 34(3): 3056-3068.
[8] 肖洒, 谈恒, 吴珊妮, 曾敏, 熊春荣. CuO/Er-Yb-TiO2的制备及在模拟可见光下催化CO2合成甲醇[J]. 材料导报, 2020, 34(2): 2005-2009.
[9] 朱广彬, 边志成, 何雨林, 李前进, 郭路路, 罗志虹, 罗鲲. 铁/氮共掺杂石墨烯的制备及氧还原催化活性[J]. 材料导报, 2020, 34(2): 2010-2016.
[10] 季根顺, 陈晓龙, 贾建刚, 李小龙, 龚静博, 郝相忠. 液相汽化TG-CVI法制备C/C复合材料的组织和性能[J]. 材料导报, 2020, 34(2): 2029-2033.
[11] 祝一锋, 黄小钢, 朱文仙, 张攀攀, 唐华东. 原位光催化聚合制备聚(N-乙烯基咔唑)/TiO2纳米复合材料及其光催化性能[J]. 材料导报, 2020, 34(2): 2147-2152.
[12] 任秦博,王景平,杨立,李翔,王学川. 用于电阻式柔性应变传感器的导电聚合物复合材料研究进展[J]. 材料导报, 2020, 34(1): 1080-1094.
[13] 刘大波, 苏向东, 赵宏龙. 光催化分解水制氢催化剂的研究进展[J]. 材料导报, 2019, 33(Z2): 13-19.
[14] 贾颖. Li在石墨烯表面吸附与迁移的第一性原理研究[J]. 材料导报, 2019, 33(Z2): 43-47.
[15] 齐云霞, 赵小伟, 杨永新, 黄冬维, 赵辉玲, 丁海生, 程广龙. TiO2基光电化学传感器电极结构调控的研究进展[J]. 材料导报, 2019, 33(Z2): 48-52.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed