Please wait a minute...
材料导报  2020, Vol. 34 Issue (5): 5158-5166    https://doi.org/10.11896/cldb.18120041
  高分子与聚合物基复合材料 |
芳纶纳米纤维的制备及应用研究进展
张美云, 罗晶晶, 杨斌, 刘国栋, 宋顺喜
陕西科技大学轻工科学与工程学院,轻化工程国家级实验教学示范中心,西安 710021
Research Progress of Preparation and Application of Aramid Nanofibers
ZHANG Meiyun, LUO Jingjing, YANG Bin, LIU Guodong, SONG Shunxi
National Demonstration Center for Experimental Light Chemistry Engineering Education, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China
下载:  全 文 ( PDF ) ( 9373KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着纳米科学与技术的进步,诸多纳米材料如纳米纤维素、碳纳米管、石墨烯纳米片和金属纳米线等逐渐进入人们的视野。基于特殊的纳米效应,纳米材料表现出常规宏观材料所不具有的物理或化学特性,在各个科学领域得到了飞速的发展。其中,以高性能纳米构筑基元如芳纶纳米纤维为主体的纳米材料是当下研究的热点之一。然而,芳纶纤维本身具有的高强高模、耐高温、高结晶度和耐腐蚀等特性为实现其纳米化制备带来了很大的困难。因此,寻找一种简易、快捷、有效的芳纶纳米纤维制备技术对实现芳纶纳米纤维功能化、高性能化及各科学领域交叉的多元化利用非常关键。
  目前,可用于制备芳纶纳米纤维的技术较少。根据不同的路径,分为自上而下和自下而上两种策略。其中,自上而下策略主要包括静电纺丝、旋转喷射纺丝、碱协同机械磨解和碱溶法四种;自下而上策略主要是指聚合分散法。其中,碱溶法不仅实现了芳纶纤维高效可控的纳米化制备,还较为完整地保留了芳纶纤维在结构与性能方面的优异性,成为当下应用最为广泛的芳纶纳米纤维制备技术。芳纶纳米纤维具备芳纶纤维优异的本体性能和高性能聚合物纳米纤维纳米效应的双重优势,成为一种新颖的纳米构筑基元,可有效解决芳纶纤维化学惰性高、反应活性低和界面复合效果不理想的难题,在复合增强、电池隔膜、吸附过滤、电气绝缘、柔性电极等领域具有广泛的应用前景。然而,芳纶纳米纤维的制备与应用也存在一定的问题:首先制备技术存在制备周期长、能耗高、纤维粗大和成膜强度低等问题;芳纶纳米纤维的应用研究依然处于实验室研究阶段,要实现真正的规模化、功能化与高性能化利用还有很长的路要走。
  本文重点阐述了芳纶纳米纤维的研究进展,分别对现阶段芳纶纳米纤维的制备技术进行了介绍,分析了近年来芳纶纳米纤维在各科学领域的应用现状,提出其发展所面临的主要问题并进行了展望,以期为实现芳纶纳米纤维的低能高效制备以及高值化利用提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张美云
罗晶晶
杨斌
刘国栋
宋顺喜
关键词:  芳纶纤维  芳纶纳米纤维(ANFs)  高效制备  纳米复合材料  电子能源器件    
Abstract: With the advancement of nanoscience and technology, various nanomaterials like nanocellulose, carbon nanotube, graphene nanosheet and metal nanorod are gradually coming into people’s view. Based on the special nanometer effect, nanomaterials exhibit physical or chemical properties those conventional macroscopical materials do not have, which have been developed rapidly in the various fields of science. Among them, high-performance nanoscale building blocks such as aramid nanofibers (ANFs) are one of the research hotspots. However, it is quite difficult to achieve the nanoscale preparation of aramid fibers due to their characteristics like high strength and modulus, high crystallinity and excellent corrosion resistance. Therefore, it really remains an urgent need to seek for a simple, quick and effective ANFs preparation technique to achieve the functionalization, high-performance and multipurpose utilization of the intersection of various scientific fields of ANFs.
  At present, there are just a few available techniques to prepare ANFs, which can be mainly divided into top-to-bottom and bottom-to-top two strategies. The top-to-bottom strategy refers to the electrospinning, rotary jet-spinning, mechanical disintegration synergized by alkaline and alkaline dissolution, whilst the bottom-to-top strategy points to the polymerization assisted by dispersion. Among these ANFs preparation techniques, alkaline dissolution is the most widely used one which has not only achieved the efficient and controllable preparation of ANFs, but also has better retained the advantages of aramid fibers in terms of structure and performance. Combined with the dual advantages of excellent performances of aramid fiber and special nanoscale effects of nanofiber, ANFs can effectively solve the problems of high chemical inertness, low reactive activity and poor interfacial adhesion of aramid fibers as a novel nanoscale building block. This makes ANFs display promising prospects in composite reinforcement, battery separator, adsorption filtration, electrical insulation and flexible electrode fields. Nevertheless, some problems also exist in the preparation and application of ANFs: first, ANFs preparation techniques still has the difficulty in their long preparation period, high energy consumption, large fiber size and low film forming strength; the application studies of ANFs are still in the laboratory research stage, and there is still a long distance to achieve their real scale, functionalization and utilization of high-performance.
  This review focuses on the research progress of ANFs. Firstly, the preparation techniques of ANFs are introduced. Then the applications of ANFs in various fields are analyzed, and we present the main problems that ANFs are facing and some prospects are given. The purpose of this work is to offer a reference for the low energy consumption but high efficiency preparation and high-value utilization of ANFs.
Key words:  para-aramid    aramid nanofibers(ANFs)    efficient preparation    nanocomposites    electronic energy device
               出版日期:  2020-03-10      发布日期:  2020-01-16
ZTFLH:  TQ342.72  
基金资助: 国家重点研发计划 (2017YFB0308300);陕西省重点科技创新团队 (2017KCT-02);纤维材料改性国家重点实验室开放课题 (LK1601);轻化工程国家级实验教学示范中心 (陕西科技大学)开放课题 (2018QGSJ02-12)
通讯作者:  lxyangbin@126.com   
作者简介:  张美云,博士研究生导师,入选国家“万人计划”领军人才,是全国优秀科技工作者、教育部首批“全国黄大年式教师团队”负责人。目前主要从事高性能纤维纸基功能材料研究,主持国家重点研发计划、863项目等国家级项目20余项,获国家科技进步奖二等奖2项、省部级科学技术奖一等奖4项;授权国家发明专利56项;出版专著6部;发表论文490余篇;罗晶晶,2016年6月毕业于陕西科技大学,获得工学学士学位。现为陕西科技大学轻工科学与工程学院硕士研究生,在张美云老师和杨斌老师的指导下进行研究。目前主要研究领域为芳纶纳米纤维的制备及其应用;杨斌,2013年6月毕业于陕西科技大学,获得轻工技术与工程硕士学位,毕业后留校工作,是张美云教授带领的高性能纸基功能材料团队核心骨干成员。主要从事高性能纸基功能材料和先进纤维基功能材料研究。目前正在西北工业大学材料学专业在职攻读博士学位,师从张秋禹教授。研究成果获国家科技进步二等奖1项、教育部技术发明一等奖1项,在ACS Nano, ACS Sustain. Chem. Eng., Compos. Part B-Eng.等期刊发表SCI收录论文10篇,参编教材1部,授权发明专利5项。
引用本文:    
张美云, 罗晶晶, 杨斌, 刘国栋, 宋顺喜. 芳纶纳米纤维的制备及应用研究进展[J]. 材料导报, 2020, 34(5): 5158-5166.
ZHANG Meiyun, LUO Jingjing, YANG Bin, LIU Guodong, SONG Shunxi. Research Progress of Preparation and Application of Aramid Nanofibers. Materials Reports, 2020, 34(5): 5158-5166.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18120041  或          http://www.mater-rep.com/CN/Y2020/V34/I5/5158
1 Ehlert G J, Sodano H A. ACS Applied Materials & Interfaces, 2009, 1(8), 1827.
2 Tong P W, Lu S J, Zhang M, et al. New Chemical Materials, 2014(5), 38(in Chinese).
童鹏威, 鲁圣军, 张敏,等. 化工新型材料, 2014(5), 38.
3 Yang W L, Chen C F, Peng T. China Achievement of Science and Technology, DOI:10.3772/j.issn.1009-5659.2014.22.001(in Chinese).
杨文良, 陈超峰, 彭涛. 中国科技成果, DOI:10.3772/j.issn.1009-5659.2014.22.001.
4 Persano L, Camposeo A, Tekmen C, et al. Macromolecular Materials and Engineering, 2013, 298(5), 504.
5 Yang M, Cao K Q, Sui L, et al. ACS Nano, 2011, 5(9), 6945.
6 Nain A S, Wong J C, Amon C, et al. Applied Physics Letters, 2006, 89(18), 1940.
7 Kim J H, Lee S H, Ku B C, et al. Materials Letters, 2011, 59(29-30), 4044.
8 Stendahl J C, Rao M S, Guler M O, et al. Advanced Functional Mate-rials, 2010, 16(4), 499.
9 Tokarev A, Trotsenko O, Griffiths I M, et al. Advanced Materials, 2015, 27(23), 3560.
10 Chen G K, Guo J X, Nie J, et al. Polymer, 2016, 83, 12.
11 Formhals A. U. S. patent, US1975504, 1934.
12 Bao J S, Han B Z, Xu C C. Technical Textiles, 1988(s1), 45(in Chinese).
宝净生, 韩宝珍, 徐朝俦.产业用纺织品, 1988(s1), 45.
13 Yao J, Jin J, Lepore E, et al. Macromolecular Materials & Engineering, 2016, 300(12), 1238.
14 Gonzalez G M, Macqueen L A, Lind J U, et al. Macromolecular Mate-rials & Engineering, 2016, 302(1),1600365.
15 Jiang M. The characterization of PPTA fibrid structure and the study on its paper based composite performance. Master’s Thesis, Shaanxi University of Science and Technology, China, 2015(in Chinese).
江明. 对位芳纶沉析纤维结构表征及其纸基复合材料性能的研究. 硕士学位论文, 陕西科技大学, 2015.
16 Wollbrett-Blitz J, Joannès S, Bruant R, et al. Journal of Polymer Science Part B Polymer Physics, 2016, 54(3), 374.
17 Cayer-Barrioz J, Tonck A, Mazuyer D, et al. Journal of Polymer Science Part B Polymer Physics, 2010, 43(3), 264.
18 Ifuku S, Maeta H, Izawa H, et al. RSC Advances, 2014, 4(76), 40377.
19 Dai J, Xiong Y Z, Cui L F, et al. Journal of Synthetic Crystals, 2016, 45(11),2705(in Chinese).
戴骏, 熊玉竹, 崔凌峰,等. 人工晶体学报, 2016, 45(11), 2705.
20 Zhang Y H, Huang Y D, Liu L, et al.Journal of Applied Polymer Scie-nce, 2010, 106(4), 2251.
21 Xi M, Li Y L, Shang S Y, et al. Surface & Coatings Technology, 2008, 202(24), 6029.
22 Qiao K, Zhu B, Yin X Y, et al. Applied Mechanics & Materials, 2011, 66-68, 1067.
23 Jia Zhao. Fibers & Polymers, 2013, 14(1), 59.
24 Takayanagi M, Katayose T. Journal of Polymer Science: Polymer Chemistry Edition, 1981, 19(5), 1133.
25 Burch R R, Sweeny W, Schmidt H W, et al. Macromolecules, 1990, 23(4), 1065.
26 Burch R R, Manring L E. Macromolecules, 1991, 24(8), 1731.
27 Kuang Q X. Research on preparation and properties of the Kevlar nanofiber composite films. Master’s Thesis, Harbin Institute of Technology, China, 2015(in Chinese).
邝青霞. 凯夫拉纳米纤维复合薄膜的制备与性能研究. 硕士学位论文, 哈尔滨工业大学, 2016.
28 Luo J J, Zhang M Y, Yang B, et al. Applied Nanoscience,DOI: 10.1007/s13204-018-0722-z.
29 Lyu J, Liu L H, Zhao X, et al. Journal of Materials Engineering & Performance, 2016, 25(11), 1.
30 Zhu J Q, Cao W X, Yue M L, et al. SACS Nano, 2015, 9(3), 2489-501.
31 Tian W T, Qiu T, Shi Y F, et al. Materials Letters, 2017, 202, 158.
32 Li J L, Tian W T, Yan H C, et al. Journal of Applied Polymer Science, 2016, 133(30), 43623.
33 Guan Y, Li W, Zhang Y L, et al. Composites Science & Technology, 2017, 144, 193.
34 Yang M, Cao K Q, Yeom B J, et al. Journal of Composite Materials, 2015, 49(15), 1873.
35 Cao W X, Yang L, Qi X D, et al. Advanced Functional Materials, 2017, 27(34), 1701061.
36 Tung S O, Ho S S, Yang M, et al. Nature Communications, 2015, 6, 6152.
37 Tung S O, Fisher S L, Kotov, N A. Nature Communications, 2018, 9, 4193.
38 Nie C X, Yang Y, Peng Z H, et al. Journal of Membrane Science, 2017, 528, 251.
39 Nie C X, Peng Z H, Ye Y, et al. Journal of Hazardous Materials, 2016, 318, 255.
40 Yuan Y Q, Li J, Liu Y Q, et al. Polymer Composites, DOI: 10.1002/pc.24224.
41 Yang B, Zhang M Y, Lu Z Q, et al. Composites Part B, 2018, 154, 166.
42 Yang B, Zhang M Y, Lu Z Q, et al. ACS Sustainable Chemistry and Engineering, 2018, 6, 8954.
43 Kwon S R, Harris J, Zhou T Y, et al. ACS Nano, 2017, 11(7), 6682.
44 Kwon S R, Elinski M B, Batteas J D, et al. ACS Applied Materials & Interfaces, 2017, 9(20), 17125.
45 Li Y N, Ren G Y, Zhang Z Q, et al. Journal of Materials Chemistry A, 2016, 4(44), 17324.
46 Wu Y D, Wang F, Huang Y D. Composites Science & Technology, 2018, 159, 70.
47 Fan J C, Wang J L, Shi Z X, et al. Materials Chemistry & Physics, 2013, 141(2-3), 861.
48 Peng Z H, Yang Y, Luo J Y, et al.Biomaterials Science, 2016, 4(9), 1392.
49 Wang F, Wu Y D, Huang Y D. Composites Part A: Applied Science & Manufacturing, 2018, 110, 126.
50 Fan J C, Shi Z X, Zhang L, et al. Nanoscale, 2012, 4(22), 7046.
51 Park B, Lee W, Lee E, et al. ACS Applied Materials & Interfaces, 2015, 7(5), 3329.
52 Lee J U, Park B, Kim B S, et al. Composites Part A: Applied Science & Manufacturing, 2016, 84, 482.
53 Li J B, Fan J C, Liao K X, et al. RSC Advances, 2016,6, 90263.
54 Lyu Jing, Wang X Z, Liu L H, et al. Advanced Functional Materials, 2016, 26(46), 8435.
55 Ming Z, Song X, Ma M J, et al. Renewable & Sustainable Energy Reviews, 2013, 20(4), 169.
56 Larsson F, Andersson P, Blomqvist P, et al. Journal of Power Sources, 2014, 271, 414.
57 Wang Q S, Ping P, Zhao X J, et al. Journal of Power Sources, 2012, 208(24), 210.
58 Shen C, Hu G H, Cheong L Z, et al. Small Methods, 2018, 2(2), 1700298.
59 Snow A, Anderson B, Wootton B. Dossiers Environnement, 2011, 20(1), 54.
60 Chen L, Song H, Li Z, et al. Insulating Materials, 2018(10),7(in Chinese).
陈磊, 宋欢, 李正, 等.绝缘材料, 2018(10),7.
61 Chinnappan A, Baskar C, Baskar S, et al. Journal of Materials Chemistry C, 2017, 5(48), 12657.
[1] 祝一锋, 黄小钢, 朱文仙, 张攀攀, 唐华东. 原位光催化聚合制备聚(N-乙烯基咔唑)/TiO2纳米复合材料及其光催化性能[J]. 材料导报, 2020, 34(2): 2147-2152.
[2] 郑孝源, 赵子龙, 任志英. 碳掺杂TiO2纳米管的制备和表征及在污水处理方面的应用[J]. 材料导报, 2019, 33(Z2): 113-115.
[3] 刘艳, 宫庆华, 周国伟. 不同形貌CeO2基纳米复合材料的制备及应用研究进展[J]. 材料导报, 2019, 33(Z2): 125-129.
[4] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[5] 高党鸽, 王平平, 吕斌, 马建中. POSS/聚合物纳米复合材料制备方法的研究进展[J]. 材料导报, 2019, 33(3): 550-557.
[6] 姜啟亮, 陈琦, 姜付本, 陈宬, VERPOORT Francis. 降冰片烯及其衍生物开环易位聚合的研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1165-1173.
[7] 李旭飞, 车阳丽, 吕艳, 刘芳, 王永强, 赵朝成. 壳聚糖/无机物纳米复合材料在抗菌方面的研究进展[J]. 材料导报, 2018, 32(21): 3823-3830.
[8] 张旺玺, 王艳芝, 梁宝岩, 李启泉, 罗伟, 孙长红, 成晓哲, 孙玉周. 纳米金刚石基于功能材料应用的研究现状[J]. 《材料导报》期刊社, 2018, 32(13): 2183-2188.
[9] 王静,刘红科,刘平生,李利. 高强度水凝胶纳米复合材料的研究进展[J]. 《材料导报》期刊社, 2018, 32(1): 67-75.
[10] 陈坚, 徐晖. 石墨烯及其纳米复合材料作为锂离子电池负极的研究进展*[J]. CLDB, 2017, 31(9): 36-44.
[11] 刘蕊蕊, 冀志江, 谭建杰, 王静, 张琎珺, 廖祥. 海泡石基金属氧化物复合材料的合成及其光催化性能研究进展*[J]. CLDB, 2017, 31(9): 152-157.
[12] 张鸿宇,李治应,曾蓉,. 高效温和制备纳米片状β-Co(OH)2用于超级电容器电极[J]. 材料导报编辑部, 2017, 31(22): 15-20.
[13] 赵玉婷, 沈艳飞. 光电化学传感器及其在生物分析中的应用研究进展*[J]. CLDB, 2017, 31(13): 138-145.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed