Please wait a minute...
材料导报  2020, Vol. 34 Issue (5): 5148-5157    https://doi.org/10.11896/cldb.19030010
  高分子与聚合物基复合材料 |
大π共轭分子四苯基二苯并荧蒽及二茚并苝的有机光电器件研究进展
余俊乐1,2, 郑燕琼2, 唐杰1,2, 杨芳1,2, 王超1,2, 魏斌2, 李喜峰2,3, 石继锋2,3
1 上海大学材料科学与工程学院,上海 200072;
2 上海大学新型显示技术及应用集成教育部重点实验室,上海 200072;
3 上海市新型显示设计制造与系统集成专业技术服务平台,上海 200072
Research Progress in Organic Optoelectronic Devices Based on Large π Conjugated Molecules Tetraphenyldibenzoperiflanthene and Diindenoperylene
YU Junle1,2, ZHENG Yanqiong2, TANG Jie1,2, YANG Fang1,2, WANG Chao1,2, WEI Bin2, LI Xifeng2,3, SHI Jifeng2,3
1 School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China;
2 Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai 200072, China;
3 Shanghai Advanced Display Design, Manufacturing, and System Integration Professional Technical Service Platform, Shanghai 200072, China
下载:  全 文 ( PDF ) ( 7137KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,有机半导体的开发及应用推动了有机光电器件的迅速发展。其中小分子半导体器件相比聚合物半导体器件具有更好的重现性和可控性,制备工艺更多样化,界面调控更简单且机理更清晰。然而,小分子半导体在成膜设备和成膜工艺方面要求相对更高,尤其是工艺参数对膜中分子聚集态和取向性有显著影响。目前,小分子半导体材料存在的不足在于:(1)常规制备工艺难以获得分子排列高度有序的薄膜;(2)可同时蒸镀和溶液加工的小分子半导体相对缺乏;(3)光吸收范围相对较窄且激子扩散长度较短。
  2009年首次报道的二萘嵌苯类小分子半导体四苯基二苯并荧蒽(Tetraphenyldibenzoperiflanthene,DBP)及其衍生物二茚并苝(Diindeno-perylene,DIP)凭借优异的光电性能,如DBP在可见光区强吸收、双极传输特性、高空穴迁移率、强水平分子取向趋势、高光/热稳定性以及DIP的双极传输特性、垂直分子取向和高结晶性等,引起了越来越多的关注。近年来,研究者们主要从设备改造、制备工艺、器件结构和材料匹配等方面进行尝试,不断提升基于DBP和DIP的有机光电器件的性能。
  DBP和DIP在有机光伏电池、有机发光二极管、有机晶体管中被有效应用。主要通过热退火和溶剂蒸气退火工艺提升DBP光伏电池的光电流、填充因子,并将DBP作为受体匹配合适的给体或将DBP与非富勒烯受体匹配后获得更高的开路电压。在基于DBP的有机发光二极管和有机场效应晶体管方面,主要研究了器件性能与缓冲层传输特性、发光层结构、基板温度和沟道长度等之间的关联性。关于DIP薄膜,近几年的研究工作将角度倾斜沉积、温度控制、退火工艺、分子模板等手段引入到薄膜分子取向调控中。并利用DIP的双极传输制备了基于DIP给体或DIP受体的光伏电池,获得了较高的电池效率(5.8%)。此外,通过易结晶的DIP诱导其他半导体材料的分子排列提升有机场效应晶体管的迁移率。
  本文系统综述了DBP和DIP的材料特性及其在上述多种有机光电器件中的重要研究进展,并对其研究趋势进行了深度展望,以期为这类小分子半导体的分子设计及应用提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
余俊乐
郑燕琼
唐杰
杨芳
王超
魏斌
李喜峰
石继锋
关键词:  DBP  DIP  有机光伏电池  有机发光二极管  有机场效应晶体管    
Abstract: In recent years, the application of organic semiconductors has promoted the rapid development of organic optoelectronics. Compared with polymer semiconductor devices, small-molecule semiconductor devices have better reproducibility and controllability, more diversified fabrication processes, simpler interface regulation and clearer mechanism. However, small-molecule semiconductors have higher requirement in equipment and process, especially the process parameters exert a significant influence on the molecular aggregation state and orientation in the film. Currently the disadvantages of small-molecule semiconductor materials are as follows: (1) it is difficult to obtain thin films with highly ordered molecular arrangement via conventional fabrication process; (2) small-molecule semiconductors which can be fabricated by evaporation and solution- processing are relatively lack; (3) the optical absorption range is relatively narrow and the exciton diffusion length is shorter.
  Small molecules of tetraphenyldibenzoperiflanthene (DBP) reported firstly in 2009 and its derivative diindenoperylene (DIP) show excellent photoelectronic properties. DBP demonstrates strong visible absorption, bipolar transport, high hole-mobility, strong trend of horizontal molecular orientation, high light- and thermal-stability. DIP indicates bipolar transport, perpendicular molecular orientation, and apparent crystallinity. Therefore, DBP and DIP have attracted more and more scientists’ attention. In recent years, researchers have mainly tried to improve the performance of organic optoelectronic devices based on DBP and DIP by equipment modification, fabrication process, device structure, and material matching and so on.
  DBP and DIP have been efficiently applied in organic solar cells (OSC), organic light emitting diodes (OLED), and organic field effect transistors (OFET). The photocurrent and filling factor of DBP photovoltaic cells were increased by thermal annealing and solvent vapor annealing, and higher open-circuit voltage was obtained by using DBP as acceptor or matching DBP donor with non-fullerene acceptor. For DBP-based OLED and OFET, the correlation between device performance and the transport characteristics of buffer layers, the emitting layer structure, the substrate temperature, and the channel length are mainly studied. With regard to the DIP thin films, in recent years the methods of oblique gra-zing angle deposition, temperature control, annealing process, and molecular template have been introduced into the regulation of molecular orie-ntation in thin films. The OSCs based on DIP donor or DIP receptor were prepared due to the bipolar transport of DIP and achieved high efficiency of 5.8%. In addition, the molecular arrangement of other semiconductors is guided by the crystalline DIP to increase the mobility of the OFETs.
  This paper systematically reviews the DBP and DIP properties and the important research progress in many kinds of organic optoelectronic devices. Finally, the development tendency in the future of organic optoelectronic devices based on DBP and DIP is prospected, hoping to provide a reference for the molecular design and application of such type of small molecular semiconductors.
Key words:  DBP    DIP    organic solar cells    organic light-emitting diodes    organic field-effect transistors
               出版日期:  2020-03-10      发布日期:  2020-01-16
ZTFLH:  TM914.4  
基金资助: 国家自然科学基金(61504077;61674101);上海市科学技术委员会资助(17DZ2291500);上海市优秀学术/技术带头人计划(18XD1424400);上海市教育发展基金会和上海市教育委员会“曙光计划”
通讯作者:  zhengyanqiong@shu.edu.cn   
作者简介:  余俊乐,2017年6月毕业于湖北大学,获得工学学士学位。现为上海大学材料科学与工程学院硕士研究生,在郑燕琼副研究员的指导下进行研究。主要从事有机太阳能电池及OLED方面的研究;郑燕琼,上海大学新型显示技术及应用集成教育部重点实验室副研究员、硕士研究生导师。2009年于华中科技大学获得博士学位,2009—2013年于日本国立九州工业大学和九州大学从事博士后研究。2014年1月回国后,先后获得上海市自然科学基金、国家基金委青年基金、国家重点研发专项二级子课题、上海高校青年教师培养资助计划等项目。主要从事有机光电子材料与器件的研究工作。近年来,在相关领域发表SCI论文40余篇,申请发明专利6项。
引用本文:    
余俊乐, 郑燕琼, 唐杰, 杨芳, 王超, 魏斌, 李喜峰, 石继锋. 大π共轭分子四苯基二苯并荧蒽及二茚并苝的有机光电器件研究进展[J]. 材料导报, 2020, 34(5): 5148-5157.
YU Junle, ZHENG Yanqiong, TANG Jie, YANG Fang, WANG Chao, WEI Bin, LI Xifeng, SHI Jifeng. Research Progress in Organic Optoelectronic Devices Based on Large π Conjugated Molecules Tetraphenyldibenzoperiflanthene and Diindenoperylene. Materials Reports, 2020, 34(5): 5148-5157.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19030010  或          http://www.mater-rep.com/CN/Y2020/V34/I5/5148
1 Burlinggame Q, Zanotti G, Ciammaruchi L, et al. Organic Electronics, 2017, 41,274.
2 Zhuang T, Sano T, Kido J. Organic Electronics, 2015, 26,415.
3 Deng D, Zhang Y, Zhang J, et al. Nature Communications, 2016, 7,13740.
4 Cheacharoen R, Mateker W R, Zhang Q, et al. Solar Energy Materials, 2017, 161,368.
5 Liu Z. Acta Physico-Chimica Sinica, 2018, 34 (11),1191(in Chinese).
刘忠范. 物理化学学报, 2018, 34 (11),1191.
6 Li S, Ye L, Zhao W, et al. Advanced Materials, 2016, 28,9423.
7 Cui Y, Li P, Song C, et al. Journal of Physical Chemistry C, 2016, 120,28939.
8 Gupta V, Bagui A, Singh S P. Advanced Functional Materials, 2017, 27(2),1603820.
9 Fujishima D, Kanno H, Kinoshita T, et al. Solar Energy Materials & Solar Cells, 2009, 93,1029.
10 Zhou Y, Taima T, Shibata Y, et al. Solar Energy Materials & Solar Cells, 2011, 95,2861.
11 Grob S, Opitz A, Opitz A, et al. Journal of Materials Chemistry A, 2015, 3,15700.
12 Nojiri K, Yamamoto K, Yamamoto K, et al. Organic Electronics, 2016, 38,107.
13 Liu C, Zhang S, Wang L, et al. Chemical Industry & Engineering Progress, 2012, 31(2),310(in Chinese).
刘春波, 张实, 王龙, 等. 化工进展, 2012, 31(2),310.
14 Ameen M Y, Pradhan S, Suresh M R, et al. Optical Materials, 2015, 39,134.
15 Kimoto Y, Akiyama T, Fujita K. Japanese Journal of Applied Physics, 2017, 56,021601.
16 Cattin L, Djobo S O, Sanchez C, et al. Energy Procedia, 2012, 31,89.
17 Zhang J, Yang F, Zheng Y Q, et al. Applied Surface Science, 2015, 357,1281.
18 Xiao X, Zimmerman J D, Lassiter B E, et al. Applied Physics Letters, 2013, 102,073302.
19 Calio L, Patil B R, Benduhn J, et al. Sustainable Energy & Fuels, 2018, 2(10),2296.
20 Patil B R, Ahmadpour M, Sherafatipour G, et al. Science Reports, 2018, 8,12608.
21 Wang Z, Yokoyama D, Wang X F, et al. Energy Environment Science, 2012, 6,249.
22 Song B, Rolin C, Zimmerman J D, et al. Advanced Materials, 2014, 26,2914.
23 Chen C W, Huang Z Y, Lin Y M, et al. Physical Chemistry Chemical Physics, 2014, 16,8852.
24 Zheng Y Q, Potscavage W J Jr, Komino T, et al. Applied Physics Letters, 2013, 6,143304.
25 Zheng Y Q, Wang C, Yang F, et al. Journal of Physics D: Applied Phy-sics, 2016, 49,465106.
26 Ding K, Liu X, Forrest S R. Nano Letters, 2018, 18,3180.
27 Lee S H, Lee J Y. Optics Express, 2018, 26(14),A697.
28 Peng Y, Zhang L, Andrew T L. Applied Physics Letters, 2014, 105,083304.
29 Bartynski A N, Mark G, Das S, et al. Journal of the American Chemical Society, 2015, 137,5397.
30 Zheng Y Q, Potscavage W J Jr, Zhang J, et al. Synthetic Metals, 2015, 205,121.
31 Bartynski A N, Grob S, Linderl T, et al. Journal of Physical Chemistry C, 2016, 120,19027.
32 Zhang Y, Stephen R F. Physical Review Letters, 2012, 108,267404.
33 Liu D, Xiang J, Chen Y, et al. Scientia Sinica Physica, Mechanica & Astronomica, 2017, 47(2), 027001(in Chinese).
刘冬玉, 向杰, 陈颖冰, 等. 中国科学:物理学 力学 天文学, 2017, 47(2), 027001.
34 Zheng Y Q, Yu J L, Wang C, et al. Journal of Physics D: Applied Phy-sics, 2018, 51,225302.
35 Okumoto K, Kanno H, Hamada Y, et al. Applied Physics Letters, 2006, 89,013502.
36 Kasahara T, Mizuno J, Matsunami S, et al. In:Transducers & Eurosensors XXVII: The International Conference on Solid-State Sensors, Actuators and Microsystems, Barcelona, Spain, 2013,pp.2596.
37 Kasahara T, Matsunami S, Edura T, et al. Sensors & Actuators A: Physical, 2014, 214,225.
38 Kasahara T, Matsunami S, Edura T, et al. Sensors and Actuators B: Chemical, 2015, 207,481.
39 Kasahara T, Ishimatsu R, Kuwae H, et al. Japanese Journal of Applied Physics, 2018, 57(12),128001.
40 Boukhili W, Mahdouani M, Bourguiga R, et al. Microelectronic Enginee-ring, 2016, 160,39.
41 Boukhili W, Mahdouani M, Bourguiga R, et al. Microelectronic Enginee-ring, 2016, 150,47.
42 Kurrle D, Pflaum J. Applied Physics Letters, 2008, 92,133306.
43 Ciccullo F, Savu S A, Glaser M, et al. Chemical Physics, 2016, 18,13693.
44 Duva G, Mann A, Pithan L, et al. Journal of Physical Chemistry Letters, 2019, 10(5),1031.
45 Duva G, Pithan L, Zeiser C, et al. Journal of Physical Chemistry C, 2018, 122(32),18705.
46 Zhang G, Hawks S A, Ngo C, et al. ACS Applied Materials & Interfaces, 2015, 7,25247.
47 Lorch C, Novák J, Banerjee R, et al. Journal of Chemical Physics, 2017, 146,911.
48 Belova V, Beyer P, Meister E, et al. Journal of the American Chemical Society, 2017, 139(25),8474.
49 Lorch C, Banerjee R, Dieterle J, et al. Journal of Physical Chemistry C, 2015, 119,23211.
50 Wagner J, Gruber M, Hinderhofer A, et al. Advanced Functional Mate-rials, 2010, 20,4295.
51 Gruber M, Wagner J, Klein K, et al. Advanced Energy Materials, 2012, 2,1100.
52 Grob S, Gruber M, Bartynski A N, et al. Applied Physics Letters, 2014, 104,213304.
53 Wang Z, Miyadera T, Yamanari T, et al. ACS Applied Materials & Interfaces, 2014, 6,6369.
54 Hormann U, Lorch C, Hinderhofer A, et al. Journal of Physical Chemistry C, 2014, 118,26462.
55 Zheng Y Q, Wang C, Yu J L, et al. Synthetic Metals, 2017, 233,35.
56 Banerjee R, Hinderhofer A, Weinmann M, et al. Journal of Physical Chemistry C, 2018, 122(3),1839.
57 Aghamohammadi M, Fernández A, Schmidt M, et al. Journal of Physical Chemistry C, 2014, 118,14833.
58 Linderl T, Hormann U, Beratz S, et al. Journal of Optics, 2016, 18,024007.
59 Yu S, Opitz A, Grob S, et al. Organic Electronics, 2014, 15,2210.
60 Lorch C, Frank H, Banerjee R, et al. Applied Physics Letters, 2015, 107,201903.
61 Horlet M, Kraus M, Brütting W, et al. Applied Physics Letters, 2011, 98,105.
62 Gerlach A, Sellner S, Kowarik S, et al. Physica Status Solidi A, 2008, 205,461.
63 Opitz A, Horlet M, Kiwull M, et al. Organic Electronics, 2012, 13,1614.
64 Hansen N H, Wunderlich C, Topczak A K, et al. Physical Review B, 2013, 87,3249.
65 Yang J P, Sun Q J, Yonezawa K, et al. Organic Electronics, 2014, 15,2749.
[1] 孙佳南,许辉. 热激发延迟荧光分子的受体基团研究进展[J]. 材料导报, 2020, 34(1): 1135-1145.
[2] 谢凤鸣, 魏怀鑫, 张强, 周家宏, 赵鑫. 基于三苯基-1,3,5-均三嗪的星形双极性蓝色磷光主体材料的合成及性质[J]. 材料导报, 2019, 33(24): 4170-4173.
[3] 卢伶,张祥,赵青华. 热激活延迟荧光材料在有机电致发光器件中的研究进展[J]. 材料导报, 2019, 33(15): 2589-2601.
[4] 徐翔宇, 李弘坤, 詹达, 刘向阳. PEDOT∶PSS掺杂丝素蛋白复合薄膜的半导体性能[J]. 材料导报, 2019, 33(10): 1734-1737.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed