Please wait a minute...
材料导报  2019, Vol. 33 Issue (15): 2589-2601    https://doi.org/10.11896/cldb.19010093
  高分子与聚合物基复合材料 |
热激活延迟荧光材料在有机电致发光器件中的研究进展
卢伶,张祥,赵青华
华侨大学材料科学与工程学院,福建省高校功能材料重点实验室,厦门 361021
Research Progress on Thermal Activated Delayed Fluorescence Materials for Organic Light-emitting Diodes
LU Ling, ZHANG Xiang, ZHAO Qinghua
The Key Laboratory for Functional Materials of Fujian Higher Education, College of Materials Science & Engineering, Huaqiao University, Xiamen 361021
下载:  全 文 ( PDF ) ( 3301KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 热激活延迟荧光(Thermally activated delayed fluorescence, TADF)材料的三重态激子能够反向系间窜越到单重态能级,发射延迟荧光,理论上内量子效率可以达到100%。与传统的磷光材料相比,一方面热激活延迟荧光材料避免了使用昂贵的重金属,成本较低,另一方面,使用更加稳定的荧光材料代替磷光材料,器件的效率和光谱稳定性均有所提高,因此热激活延迟荧光材料引起了人们的广泛关注,成为有机发光二极管(Organic light emitting diode, OLED)研究领域的热点方向。
从分子设计的角度,不同类型的热激活延迟荧光材料已经被相继报道。小分子热激活延迟荧光材料设计要求选择合适的电子给体单元和受体单元,或者添加修饰基团来营造较大的空间位阻,以分离分子的HOMO和LUMO能级,减小其单重态和三重态能隙。同时为了提高荧光量子效率,可以通过增加小分子结构的刚性来削减分子内非辐射衰变。然而,小分子热激活延迟荧光材料通常作为掺杂剂被应用于荧光器件中,很难保证其不出现红移或蓝移情况,影响器件的色纯度。
而树状和聚合物TADF材料的出现,可以适当解决这一难题。二者同属于高分子发光材料,都能够充分溶解于有机溶剂,可以通过溶液加工的工艺制作高效的非掺杂有机电致发光器件,克服了小分子只能真空蒸镀的不足。树状TADF材料因其较高的分子量、精确的分子结构、可调的能隙和颜色,已被广泛应用在有机光电器件中。树状化合物外围的树突,可以防止分子间相互作用引起的浓度猝灭和效率骤降。但是与核心发光分子共轭的树突结构会导致树状化合物的溶解度降低和发光颜色改变,所以非共轭结构是首选结构。此外,核心为双极性的树状化合物大多具有均衡的电子和空穴传输能力,内量子效率较高。聚合物因可溶液处理、具有柔性特点和可大面积、大规模生产而备受关注,但是很难精确控制热激发延迟荧光聚合物中供体和受体链段之间的距离和扭转角,也就很难保证单重态-三重态能隙大小和荧光量子效率。聚合物主要可以分为主链共轭聚合物和侧链非共轭聚合物,二者也各有优缺点。对共轭聚合物而言,将共轭单元缀合到给体-受体骨架中能够很好地解决电荷传输平衡问题。对于非共轭聚合物,采用独立的具有热延迟荧光性质的单体,能够更好地继承其热延迟荧光的性质。
本文概述了TADF材料的分子设计及在器件应用等方面的最新研究进展,首先对TADF机理进行了简单的介绍,然后分别对小分子、高分子TADF材料及其OLED器件进行了重点介绍,最后总结了TADF材料尚存在的问题,并对其未来的发展前景进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
卢伶
张祥
赵青华
关键词:  热激活延迟荧光  外量子效率  有机发光二极管    
Abstract: The triplet excitons of the thermally activated delayed fluorescence (TADF) materials can up-convert to the singlet level by the reverse intersystem crossing (RISC) process, emitting delayed fluorescence. TADF materials have attracted widespread attention, because they can reach 100% of theoretical internal quantum efficiency (IQE). Moreover, in contrast to phosphorescent materials, heavy metal-free TADF mate-rials are easier to realize the ultimate EL efficiency.
On the base of the principle of molecular design, different types of TADF materials have been reported. The design of small molecule TADF materials requires to separate the HOMO and LUMO energy levels of the molecules, and result in reducing its singlet and triplet state energy gap, by selection of suitable electron donor and acceptor units, or the addition of modified groups to increase steric hindrance. Additionally, in order to improve the fluorescence quantum efficiency, the non-radiative decay needed to be reduced by increasing the rigidity of the small molecule structure. However, small-molecule TADF materials are usually used as dopants for fluorescent devices, and it is difficult to avoid appearing of red-shift or blue-shift of emission that affects color purity of devices.
The dendritic and polymeric TADF emitters — macromolecular materials can be dissolved in organic solvents, and highly efficient non-doped organic electroluminescent devices can be fabricated by solution-processing, making up for the shortage of small molecules that can only be va-cuum evaporated. Dendritic TADF materials have been widely used in organic optoelectronic devices due to their high molecular weight, precise molecular structure, adjustable energy gap and color. The dendrites around the dendrimers can prevent concentration quenching and efficiency roll-off caused by intermolecular interactions. However, the dendritic structure conjugated to the core causes decreasing of solubility and changing of luminescent color, so a non-conjugated structure is preferred. In addition, most of bipolar dendritic cores are contributed to balance of electron and hole carriers and high efficiency.Polymers are also attracting attention due to solution processing, flexibility and large-area mass production. However, it is difficult to precisely control the distance and twist angle between donor and acceptor in chain polymer TADF materials. Therefore, it is unable to ensure decreasing of singlet-triplet energy gaps and increasing of photoluminescence quantum efficiency. The polymer can be mainly divided into main chain TADF conjugated polymers and side chain non-conjugated polymers. For conjugated polymers, conjugation of the conjugated unit to the donor-acceptor backbone will well address charge transport balance problems. For non-conjugated polymers, the use of independent monomers with thermally delayed fluorescence properties allows for better inheritance of their thermally delayed fluorescence properties.
The recent achievements in research on the design and modification of TADF materials for OLEDs were summarized. Firstly, a brief introduction to its TADF mechanism was given. Then we should focus on characterization and performances of small molecules and polymers TADF materials and its devices. Finally, the prospects and development trends for phosphorescent polymeric host materials were also included.
Key words:  thermally activated delayed fluorescence    external quantum efficiency    organic light-emitting diodes
               出版日期:  2019-08-10      发布日期:  2019-07-02
ZTFLH:  O625.1  
  O6-1  
基金资助: 国家自然科学基金(51202073);福建省自然科学基金面上项目(2016J01233);福建省石墨烯粉末及复合材料研究中心建设项目(2017H2001);华侨大学研究生科研创新基金资助项目
作者简介:  卢伶,2017年6月毕业于江西理工大学,获得理学学士学位。现为华侨大学福建省高校功能材料重点实验室硕士研究生,在赵青华副教授的指导下进行研究。目前主要研究领域为新型热激活延迟荧光材料的设计与合成。
赵青华,华侨大学材料科学与工程学院副教授,硕士研究生导师。2001年7月毕业于延边大学理工学院化工系,2008年2月在韩国国立庆尚大学高分子工学专业取得博士学位,随后两年在该校的工业研究所进行博士后研究工作。2010年3月回国后入职华侨大学。主要从事有机半导体材料的设计、合成及性能研究。近年来,在有机光电子材料领域发表论文10余篇,包括 Advanced Materials, Organic Electronics, Journal of Polymer Science Part A: Polymer Chemistry, RSC Advanced等。
引用本文:    
卢伶,张祥,赵青华. 热激活延迟荧光材料在有机电致发光器件中的研究进展[J]. 材料导报, 2019, 33(15): 2589-2601.
LU Ling, ZHANG Xiang, ZHAO Qinghua. Research Progress on Thermal Activated Delayed Fluorescence Materials for Organic Light-emitting Diodes. Materials Reports, 2019, 33(15): 2589-2601.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19010093  或          http://www.mater-rep.com/CN/Y2019/V33/I15/2589
[1] Pope M, Kallmann H P, Magnante P. Journal of Chemical Physics,1963,38(8),2042.
[2] Tang C W, VanSlyke S A. Applied Physics Letters,1987,51(12),913.
[3] Baldo M A. Physical Review B,1999,60(20),14422.
[4] Uoyama H, Goushi K, Shizu K, et al. Nature,2012,492(7428),234.
[5] Parker C A, Hatchard C G. Transactions of the Faraday Society,1961,57(3),132.
[6] Lee J, Shizu K, Tanaka H, et al. Journal of Materials Chemistry C,2015,3(10),2175.
[7] Park I S, Lee S Y, Adachi C, et al. Advanced Functional Materials,2016,26(11),1813.
[8] Kretzschmar A, Patze C, Schwaebel S T, et al. Journal of Organic Che-mistry,2015,80(18),9126.
[9] Lee S Y, Yasuda T, Komiyama H, et al. Advanced Materials,2016,28(21),4019.
[10] Hedley G J, Ruseckas A, Samuel I D W. Chemical Physics Letters,2008,450(4),292.
[11] Lawetz V, Orlandi G, Siebrand W. The Journal of Chemical Physics,1972,56(8),4058.
[12] Tao Y, Yuan K, Chen T, et al. Advanced Materials,2014,26(47),7931.
[13] Ziegler T, Rauk A. Theoretical Chemistry Accounts,1977,46(1),1.
[14] Mehes G, Nomura H, Zhang Q, et al. Angewandte Chemie International Edition,2012,51(45),11311.
[15] Kawasumi K, Wu T, Zhu T, et al. Journal of the American Chemical Society,2015,137(37),11908.
[16] Zhang Q, Li J, Shizu K, et al. Journal of the American Chemical Society,2012,134(36),14706.
[17] Wang S, Yan X, Cheng Z, et al. Angewandte Chemie International Edition,2015,54(44),13068.
[18] Zhang Q, Kuwabara H, Jr P W, et al. Journal of the American Chemical Society,2014,136(52),18070.
[19] Hirata S, Sakai Y, Masui K, et al. Nature Materials,2015,14(3),330.
[20] RCalloway P F. Chemical Physics Letters,1971,10(4),438.
[21] Maciejewski A, Szymanski M, Steer R P. Journal of Physical Chemistry,1986,90(23),6314.
[22] Sikorski M, Khmelinskii I V, Augustyniak W, et al. Journal of the Che-mical Society Faraday Transactions,1996,92(92),3487.
[23] Yamanashi B S, Hercules D M. Applied Spectroscopy,1971,25(4),457.
[24] Endo A, Ogasawara M, Takahashi A, et al. Advanced Materials,2009,21(47),4802.
[25] Endo A, Sato K, Yoshimura K, et al. Applied Physics Letters,2011,98(8),083302.
[26] Tsujimoto H, Ha D G, Markopoulos G, et al. Journal of the American Chemical Society,2017,139(13),4894.
[27] Wong M Y, Zysman-Colman E. Advanced Materials,2017,29(22),1605444.
[28] Ritchie J, Crayston J A, Markham J P J, et al. Journal of Materials Chemistry,2006,16(17),1651.
[29] Ahn T, Sik Jang M, Shim H K, et al. Macromolecules,1999,32(10),3279.
[30] Cho Y J, Jeon S K, Lee S S, et al. Chemistry of Materials,2016,28(15),5400.
[31] Rajamalli P, Senthilkumar N, Gandeepan P, et al. ACS Applied Materials & Interfaces,2016,8(40),27026.
[32] Komatsu R, Ohsawa T, Sasabe H, et al. ACS Applied Materials & Interfaces,2017,9(5),4742.
[33] Lee J, Aizawa N, Yasuda T. Chemistry of Materials,2017,29(18),8012.
[34] Rajamalli P, Senthilkumar N, Huang P Y, et al. Journal of the American Chemical Society,2017,139(32),10948.
[35] Higginbotham H F, Yi C L, Monkman A P, et al. The Journal of Physical Chemistry C,2018,122(14),7627.
[36] Wang Y, Li C, Duan R, et al. Angewandte Chemie International Edition,2017,56(38),11525.
[37] Kim D H, D’Aléo A, Chen X K, et al. Nature Photonics,2018,12(2),98.
[38] Tang X, Li X L, Liu H, et al. Dyes and Pigments,2018,149,430.
[39] Wang S, Miao Y, Yan X, et al. Journal of Materials Chemistry C,2018,6(25),6698.
[40] Tanaka H, Shizu K, Miyazaki H, et al. Chemical Communications,2012,48(93),11392.
[41] Chen D, Lin T C, Chen C, et al. ACS Applied Materials & Interfaces,2018,10(15),12886.
[42] Wu T, Huang M, Lin C, et al. Nature Photonics,2018,12(4),235.
[43] Huang B, Ban X, Sun K, et al. Dyes and Pigments,2016,133,380.
[44] Albrecht K, Matsuoka K, Fujita K, et al. Angewandte Chemie International Edition,2015,54(19),5677.
[45] Albrecht K, Matsuoka K, Yokoyama D, et al. Chemical Communications,2017,53(16),2439.
46 Matsuoka K, Albrecht K, Yamamoto K, et al. Scientific Reports,2017,7,41780.
[47] Li Y, Xie G, Gong S, et al. Chemical Science,2016,7(8),5441.
[48] Li J, Liao X, Xu H, et al. Dyes and Pigments,2017,140,79.
[49] Liao X, Yang X, Cheng J, et al. ChemPlusChem,2018,83(4),274.
[50] Albrecht K, Matsuoka K, Fujita K, et al. Materials Chemistry Frontiers,2018,2(6),1097.
[51] Wang Y, Liu W, Deng J, et al. Chemistry-An Asian Journal,2016,11(18),2555.
[52] Godumala M, Choi S, Kim H J, et al. Journal of Materials Chemistry C,2018,6(15),4325.
[53] Ban X, Jiang W, Lu T, et al. Journal of Materials Chemistry C,2016,4(37),8810.
[54] Sun K, Sun Y, Huang T, et al. Organic Electronics,2017,42,123.
[55] Ban X, Jiang W, Sun K, et al. ACS Applied Materials & Interfaces,2017,9(8),7339.
[56] Sun K, Chu D, Cui Y, et al. Organic Electronics,2017,48,389.
[57] Sun K, Sun Y, Liu D, et al. Dyes and Pigments,2017,147,436.
[58] Sun K, Sun Y, Tian W, et al. Journal of Materials Chemistry C,2018,6(1),43.
[59] Shao S, Hu J, Wang X, et al. Journal of the American Chemical Society,2017,139(49),17739.
[60] Li C, Wang Y, Sun D, et al. ACS Applied Materials & Interfaces,2018,10(6),5731.
[61] Liu Y, Wang Y, Li C, et al. Macromolecules,2018,51(12),4615.
[62] Wang Y, Zhu Y, Xie G, et al. Organic Electronics,2018,59,406.
[63] Zhu Y, Yang Y, Wang Y, et al. Advanced Optical Materials,2018,6(10),1701320.
[64] Zeng X, Luo J, Zhou T, et al. Macromolecules,2018,51(5),1598.
[65] Wu W, Tang R, Li Q, et al. Chemical Society Reviews,2015,44(12),3997.
[66] Nikolaenko A E, Cass M, Bourcet F, et al. Advanced Materials,2015,27(44),7236.
[67] Peng Q, Fan D, Duan R, et al. The Journal of Physical Chemistry C,2017,121(25),13448.
[68] Xie Y, Li Z. Journal of Polymer Science Part A: Polymer Chemistry,2017,55(4),575.
[69] Chen X, Zhang S, Fan J, et al. The Journal of Physical Chemistry C,2015,119(18),9728.
[70] Marian C M. The Journal of Physical Chemistry C,2016,120(7),3715.
[71] Meng L, Wang H, Wei X, et al. ACS Applied Materials & Interfaces,2016,8(32),20955.
[1] 宋志成, 刘代明, 刘卫东, 王庆康. QLED研究及显示应用进展[J]. 《材料导报》期刊社, 2017, 31(19): 122-128.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed