Please wait a minute...
材料导报  2020, Vol. 34 Issue (1): 1135-1145    https://doi.org/10.11896/cldb.19100192
  |
热激发延迟荧光分子的受体基团研究进展
孙佳南,许辉
黑龙江大学化学化工与材料学院功能无机材料化学教育部重点实验室,哈尔滨 150080
Research Progress on Acceptor Groups of Thermally Activated Delayed Fluorescent Molecules
SUN Jianan,XU Hui
Key Laboratory of Functional Inorganic Material Chemistry (Chinese Ministry of Education),School of Chemistry and Material Science,Heilongjiang University,Harbin 150080,China
下载:  全 文 ( PDF ) ( 4484KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,热激发延迟荧光材料(Thermally activated delayed fluorescence,TADF)及其电致发光器件取得了快速发展。TADF材料应具有小的单线态-三线态能级差,从而使其三线态激子可以通过反向系间窜越过程到达单线态,进而辐射发光。因此,与传统的荧光及磷光材料相比,TADF材料除了理论上可以实现100%的内量子效率(Internal quantum efficiency, IQE)和电生激子利用率外,它还具有更高的发光效率,且大部分TADF分子为纯有机给-受体体系,分子结构简单,基团选择范围广。通过增强TADF受体单元的吸电子能力,可以有效促进前线轨道的分离,从而降低单重态-三重态能级差,提高反向系间窜越速率。同时,调节受体的分子构型还可以抑制分子间的相互作用,改善载流子注入传输。
然而,相对于给体单元,受体单元类型多样且功能差异较大,这对选择合适的受体基团以实现有效的光电性质调控造成了一定影响。近年来,人们构建热激发延迟荧光材料更侧重于受体基团的选择,且取得了显著成果。常见的受体基团有膦氧、氰基、三嗪和羰基等。深入研究受体基团对调控分子内电子效应和分子间相互作用至关重要。
本文对近年来报道的TADF体系中主要的受体基团进行了梳理,对其结构和光电性质之间的关系进行了总结,以期为高效TADF分子的设计开发提供借鉴。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙佳南
许辉
关键词:  热激发延迟荧光(TADF)  受体基团  推拉电子效应  位阻效应  反向隙间窜越  电致发光  有机发光二极管(OLED)    
Abstract: In recent years,thermally activated delayed fluorescence (TADF) materials and their electroluminescent devices are developed rapidly. TADF molecules should have small singlet-triplet energy gaps, therefore can facilitate the triplet exciton upconverted to singlet exciton via reverse intersystem crossing (RISC) for radiation. Compared to traditional fluorescence and phosphorescence emitters, besides 100% theoretical internal quantum efficiency and electrogenerated exciton utilization ratio, TADF materials have higher luminescent efficiencies based on pure organic donor-acceptor systems with the features of simple structures and large group library, which attract the extensive attentions. In TADF molecules, acceptors with strong electron-withdrawing ability can effectively facilitate the frontier molecular orbital separation, reduce singlet-triplet energy gaps, improve RISC rate, and simultaneously suppress intermolecular interactions and modify carrier injection and transportation through adjusting molecular configurations.
However, in contrast to donor units, the acceptor groups are diverse and completely different regarding to functions, which influences the rational acceptor selection for optoelectronicoptimization. In recent years, the construction of thermally activated delayed fluorescent materials has focused more on the choice of acceptor groups and has achieved remarkable results. Common acceptor groups are phosphine oxide, cyano, triazine, carbonyl, and so on. Intensive research on acceptors groups is critical for regulating intramolecular electronic effects and intermolecular interactions.
This review paper summarizes the main acceptor groups used in recently reported TADF molecules and discusses the relationships between acceptor structure and optoelectronic performance, which would be helpful for the subsequent researches on efficient TADF molecular development.
Key words:  thermally activated delayed fluorescence (TADF)    acceptor group    electron donating/withdrawing effect    steric effect    reverse intersystem crossing    electroluminescent    organic light-emitting diode (OLED)
                    发布日期:  2020-01-15
ZTFLH:  O625  
基金资助: 长江学者奖励计划青年学者项目(Q2016208);国家自然科学基金(51873056;21672056;61605042;21602048);中国博士后创新人才支持计划(BX20180092);中国博士后科学基金(2018M640313);黑龙江省博士后基金(LBN-Z18233)和黑龙江省省属高等学校基本科研业务费基础研究项目(RCCXYJ201804)资助
通讯作者:  hxu@hlju.edu.cn   
作者简介:  孙佳南,2017年6月毕业于黑龙江大学,获理学学士学位。现在许辉教授的指导下攻读黑龙江大学有机化学专业硕士研究生,研究方向为基于芳香膦氧受体的热激发延迟荧光材料的合成及表征。
许辉,青年长江学者,教授,博士研究生导师,洪堡资深学者,现任黑龙江大学功能无机材料化学教育部重点实验室专职副主任。已在Journal of the American Chemical SocietyAngewandte ChemieAdvanced MaterialsChemical ScienceChemical Society ReviewsChemistry of MaterialsChemistry-A European JournalChemical Communications等国际著名学术期刊上发表SCI收录论文93篇。2012年入选教育部新世纪优秀人才支持计划;2016年入选长江学者特聘教授奖励计划青年学者项目;2017年获得黑龙江省科学技术奖自然科学类一等奖。
引用本文:    
孙佳南,许辉. 热激发延迟荧光分子的受体基团研究进展[J]. 材料导报, 2020, 34(1): 1135-1145.
SUN Jianan,XU Hui. Research Progress on Acceptor Groups of Thermally Activated Delayed Fluorescent Molecules. Materials Reports, 2020, 34(1): 1135-1145.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19100192  或          http://www.mater-rep.com/CN/Y2020/V34/I1/1135
1 Tang C W, VanSlyke S A, Applied Physics Letters, 1987, 51, 913.
2 Muller C D, Falcou A, Reckefuss N, et al. Nature, 2003, 421, 829.
3 Baldo M A, O'Brien D F, You Y, et al. Nature, 1998, 395, 151.
4 Endo A, Ogasawara M, Takahashi A, et al. Advanced Materials, 2009, 21, 4802.
5 Uoyama H, Goushi K, Shizu K, et al. Nature, 2012, 492, 234.
6 Tao Y, Yuan K, Chen T, et al. Advanced Materials, 2014, 26, 7931.
7 Yang Z, Mao Z, Xie Z, et al. Chemical Society Reviews, 2017, 46, 915.
8 Cai X, Su S J. Advanced Functional Materials, 2018, 28, 1802558.
9 Wolf M W, Legg K D, Brown R E, et al. Journal of the American Chemical Society, 1975, 97, 4490.
10 Jiang K, Wang Y, Cai C, et al. Chemistry of Materials, 2017, 29, 4866.
11 Lee S Y, Adachi C, Yasuda T. Advanced Materials, 2016, 28, 4626.
12 Duan C, Li J, Han C, et al. Chemistry of Materials 2016, 28, 5667.
13 Liang Q, Han C, Duan C, et al. Advanced Optical Materials, 2018, 6, 1800020.
14 Li C, Duan C, Han C, et al. Advanced Materials, 2018, 30, 1804228.
15 Gao F, Du R, Han C, et al. Chemical Science, 2019, 10, 5556.
16 Sun J W, Lee J H, Moon C K, et al. Advanced Materials, 2014, 26, 5684.
17 Cho Y J, Chin B D, Jeon S K, et al. Advanced Functional Materials, 2015, 25, 6786.
18 Byeon S Y, Kim J H, Lee J Y. ACS Applied Materials & Interfaces, 2017, 9, 13339.
19 Park I S, Lee S Y, Adachi C, et al. Advanced Functional Materials, 2016, 26, 1813.
20 Cheng Z, Li Z, Xu Y, et al. ACS Applied Materials & Interfaces, 2019, 11, 28096.
21 Saigo M, Miyata K, Tanaka S, et al. The Journal of Physical Chemistry Letters, 2019, 10, 2475.
22 Lee H L, Lee K H, Lee J Y, et al. Journal of Materials Chemistry C, 2019, 7, 6465.
23 Jayakumar J, Wu T L, Huang M J, et al. ACS Applied Materials & Interfaces, 2019, 11, 21042.
24 Vigante B, Leitonas K, Volyniuk D, et al. Chemistry-A European Journal, 2019, 25, 3325.
25 Sun J W, Baek J Y, Kim K H, et al. Chemistry of Materials, 2015, 27, 6675.
26 Lee D R, Kim M, Jeon S K, et al. Advanced Materials, 2015, 27, 5861.
27 Kim M, Choi J M, Lee J Y. Chemical Communications, 2016, 52, 10032.
28 Kang Y J, Lee J Y. Dyes and Pigments, 2017, 138, 176.
29 Cui L S, Nomura H, Geng Y, et al. Angewandte Chemie International Edition, 2017, 56, 1571.
30 Woo S J, Kim Y, Kim M J, et al. Chemistry of Materials, 2018, 30(3), 857.
31 Woo S J, Kim Y, Kwon S K, et al. ACS Applied Materials & Interfaces, 2019, 11, 7199.
32 Kang Y J, Yun J H, Han S H, et al. Journal of Materials Chemistry C, 2019, 7, 4573.
33 Yu J G, Han S H, Lee H L, et al. Journal of Materials Chemistry C, 2019, 7, 2919.
34 Li W, Li B, Cai X, et al. Angewandte Chemie International Edition, 2019, 58, 11301.
35 Braveenth R, Lee H, Kim S, et al. Journal of Materials Chemistry C, 2019, 7, 7672.
36 Wang Q, Zhang Y X, Yuan Y, et al. ACS Applied Materials & Interfaces, 2019, 11, 2197.
37 Cai X, Gao B, Li X L, et al. Advanced Functional Materials, 2016, 26, 8042.
38 Rajamalli P, Senthilkumar N, Huang P Y, et al. Journal of the American Chemical Society, 2017, 139, 10948.
39 Guo J, Li X L, Nie H, et al. Advanced Functional Materials, 2017, 27, 1606458.
40 Liang J, Li C, Zhuang X, et al. Advanced Functional Materials, 2018, 28, 1707002.
41 Cai X, Chen D, Gao K, et al. Advanced Functional Materials, 2018, 28, 1704927.
42 Liu H, Zeng J, Guo J, et al. Angewandte Chemie International Edition, 2018, 57, 9290.
43 Thangaraji V, Rajamalli P, Jayakumar J, et al. ACS Applied Materials & Interfaces, 2019, 11, 17128.
[1] 张金中, 李坚, 胡海兵, 关立伟. Yb∶MgAg纳米双层阴极的光电特性改善[J]. 材料导报, 2019, 33(z1): 297-299.
[2] 朱琦,李云辉,赵学森,耿爱芳,马玉芹. 新型有机电致荧光材料研究进展[J]. 材料导报, 2018, 32(19): 3473-3477.
[3] 刘萍, 曾葆青, 王亚雄, 汪江浩. 纳米线透明导电薄膜的制备及在光电器件中的应用*[J]. 《材料导报》期刊社, 2017, 31(7): 6-18.
[4] 宋志成, 刘代明, 刘卫东, 王庆康. QLED研究及显示应用进展[J]. 《材料导报》期刊社, 2017, 31(19): 122-128.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed