Please wait a minute...
材料导报  2020, Vol. 34 Issue (1): 1146-1154    https://doi.org/10.11896/cldb.19100215
  |
柔性阻变存储材料与器件研究进展
卢颖1,2,3,陈威林1,2,3,高双1,3,,李润伟1,2,3,4,
1 中国科学院宁波材料技术与工程研究所,磁性材料与器件重点实验室,宁波 315201
2 中国科学院大学材料科学与光电技术学院,北京100049
3 中国科学院宁波材料技术与工程研究所,浙江省磁性材料及其应用技术重点实验室,宁波 315201
4 中国科学院大学未来技术学院,北京 100049
Research Progress of Flexible Resistive Switching Materials and Devices
LU Ying1,2,3,CHEN Weilin1,2,3,GAO Shuang1,3,,LI Runwei1,2,3,4,
1 CAS Key Laboratory of Magnetic Materials and Devices,Ningbo Institute of Materials Technology and Engineering,Chinese Academy of Sciences,Ningbo 315201,China
2 College of Materials Sciences and Opto-Electronic Technology,University of Chinese Academy of Sciences,Beijing 100049,China
3 Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology,Ningbo Institute of Materials Technology and Engineering,Chinese Academy of Sciences,Ningbo 315201,China
4 School of Future Technology,University of Chinese Academy of Sciences,Beijing 100049,China
下载:  全 文 ( PDF ) ( 6430KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 物联网技术的飞速发展对柔性可穿戴电子设备提出了迫切需求,而作为电子设备不可或缺的部分,存储器势必也需要向柔性化的方向发展。阻变存储器具有高速、低功耗、非易失、结构简单、选材广泛等特性,被视为未来柔性存储器的重要候选器件之一。
在应变条件下,阻变存储器的薄膜开裂无疑会导致器件性能失效。因此,近年来除研究应变对材料性质和器件性能的影响外,研究人员主要从选择合适的阻变材料和优化器件制备工艺方面不断尝试,取得了丰硕的成果,大幅提升了器件的柔韧性。
为构建高性能的柔性阻变存储器,许多材料已被开发作为存储介质,包括无机、有机、有机-无机复合或杂化材料等。同时,金属、金属合金、碳/硅材料、氮化物、导电氧化物等已被尝试用作电极材料,聚酰亚胺(PI)、聚萘二甲酸乙二醇酯(PEN)、聚对苯二甲酸乙二醇酯(PET)、聚二甲基硅氧烷(PDMS)等也已被尝试用作柔性衬底。此外,器件的制备起初主要采用全气相法,条件相对苛刻,通常需要高真空甚至高温环境。近年来的研究工作将气相-液相混合甚至是全液相法引入到柔性阻变存储器的制备工艺中,初步实现了器件的简单、低温和快速制备。
本文归纳了柔性阻变存储器的研究进展,分别对器件材料(存储介质、电极和衬底)和制备工艺及性能进行了全面介绍,分析了器件的失效机理,并对本领域当前存在的挑战与未来发展前景进行了讨论。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
卢颖
陈威林
高双
李润伟
关键词:  柔性  阻变存储器  非易失性存储器  有机材料  有机-无机杂化材料    
Abstract: With the rapid development of Internet of things technology, there is an urgent need for flexible and wearable electronic equipments. As an indispensable part of electronic equipments, memory is bound to develop towards flexibility. With the merits of high speed, low-power consumption, intrinsic nonvolatility, simple structure and wide selection of materials, resistive switching memory has been considered as one of the most promising candidates for future flexible memory devices.
Certainly,the occurrence of cracks in thin films will lead to device failure. This urges intensive research endeavors to seek appropriate materials and optimize device fabrication process, aiming at improving the flexibility of resistive switching memory devices.
A great many of dielectric materials have been explored as the storage media of flexible resistive switching memory devices, ranging from normal inorganic and organic materials to novel organic-inorganic composite or hybrid ones. Meanwhile, a lot of conducting or semiconducting mate-rials have been employed as electrodes, including metals, metal alloys, carbon/silicon materials, nitrides, conductive oxides, etc. As for flexible substrates, common choices are polyimide (PI), polyethylene naphthalate (PEN), polyethylene terephthalate (PET) and polydimethylsiloxane (PDMS), etc. On the other hand, due to the need of high vacuum and even high temperature, the routine all-vapor method to fabricate thin film devices is normally unsuited for flexible resistive switching memory devices. To solve this issue, vapor-solution hybrid methods and even all-solution ones have recently been introduced into this field, realizing preliminary the easy, fast and low-temperature fabrication of flexible resistive switching memory devices.
In this article, the latest research progress of flexible resistive switching memory is comprehensively reviewed, with a particular emphasis on the selection of materials (including storage media as well as electrode and substrate materials), fabrication technologies and device performance. The failure mechanism of flexible resistive switching memory is also included. Finally, the current challenges and future prospects in this field are briefly discussed.
Key words:  flexibility    resistive switching memory    nonvolatile memory    organic materials    organic-inorganic hybrid materials
                    发布日期:  2020-01-15
ZTFLH:  TN43  
基金资助: 国家重点研发计划(2017YFB0405604);国家自然科学基金(61704178;61774161;61974179;51525103;51931011;61841404);宁波市自然科学基金(2018A610020)
通讯作者:  gaoshuang@nimte.ac.cn; runweili@nimte.ac.cn   
作者简介:  卢颖,2016年6月毕业于江西理工大学,获得工学学士学位。现为中国科学院宁波材料技术与工程研究所博士研究生,在李润伟研究员的指导下开展研究,主要方向为柔性/弹性阻变信息功能材料与器件。
高双,中国科学院宁波材料技术与工程研究所副研究员,硕士研究生导师。2011年6月本科毕业于北京科技大学,2016年6月博士毕业于清华大学,随后加入到中国科学院宁波材料技术与工程研究所开展博士后研究,期间入选了中科院“率先行动”优秀博士后计划。2018年12月博士后出站,留所工作并晋升为副研究员,2019年8月入选所内“春蕾人才”计划。主要从事阻变信息功能材料与器件研究,已在Chem. Soc. Rev.Mater. Sci. Eng. R、ACS Nano、Adv. Electron. Mater.等期刊发表SCI论文30余篇。
李润伟,中国科学院宁波材料技术与工程研究所研究员,博士研究生导师,现任中国科学院磁性材料与器件重点实验室主任。2008年入选中科院“百人计划”;2012年荣获亚洲磁学联盟青年学者奖;2015年获得国家杰出青年基金资助;2016年入选国家“万人计划”科技创新领军人才;2018年荣获宁波市科学技术一等奖和“浙江省特级专家”称号。主要从事柔性/弹性磁电功能材料与器件研究,在Chem. Soc. Rev.、Nat. Commun.、Sci. Robot.、Adv. Mater.、Adv. Funct. Mater.、JACS、ACS Nano、PNAS、Phys. Rev. B、Appl. Phys. Lett.等期刊发表SCI论文260余篇;申请专利130余项,授权60余项;主编了《柔性电子材料与器件》和Flexible and Stretchable Electronics两本专著。现任中国电子学会会士、亚洲磁学联盟(AUMS)委员会委员、美国电气和电子工程师协会(IEEE)高级会员、中国电子学会应用磁学分会副主任委员、中国物理学会磁学专业委员会副主任委员、全国纳米技术标准化委员会委员等职。
引用本文:    
卢颖,陈威林,高双,李润伟. 柔性阻变存储材料与器件研究进展[J]. 材料导报, 2020, 34(1): 1146-1154.
LU Ying,CHEN Weilin,GAO Shuang,LI Runwei. Research Progress of Flexible Resistive Switching Materials and Devices. Materials Reports, 2020, 34(1): 1146-1154.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19100215  或          http://www.mater-rep.com/CN/Y2020/V34/I1/1146
1 Liu Y, Pharr M, Salvatore G A. ACS Nano, 2017, 11(10), 9614.
2 Han S T, Peng H, Sun Q, et al. Advanced Materials, 2017, 29(33), 1700375.
3 Ghoneim M, Hussain M. Electronics, 2015, 4(3), 424.
4 Pan F, Gao S, Chen C, et al. Materials Science & Engineering R-Reports, 2014, 83, 1.
5 Yang Y, Gao P, Gaba S, et al. Nature Communications, 2012, 3, 732.
6 Gao S, Song C, Chen C, et al. The Journal of Physical Chemistry C, 2012, 116(33), 17955.
7 Gao S, Zeng F, Li F, et al. Nanoscale, 2015, 7(14), 6031.
8 Shang J, Xue W, Ji Z, et al. Nanoscale, 2017, 9(21), 7037.
9 Hwang S K, Lee J M, Kim S, et al. Nano Letters, 2012, 12(5), 2217.
10 Tan H, Liu G, Zhu X, et al. Advanced Materials, 2015, 27(17), 2797.
11 Chen J Y, Hsin C L, Huang C W, et al. Nano Letters, 2013, 13(8), 3671.
12 Yeom S W, Shin S C, Kim T Y, et al. Nanotechnology, 2016, 27(7), 07LT01.
13 Kim S, Son J H, Lee S H, et al. Advanced Materials, 2014, 26(44), 7480.
14 Ji Y, Yang Y, Lee S K, et al. ACS Nano, 2016, 10(8), 7598.
15 Jang J, Pan F, Braam K, et al. Advanced Materials, 2012, 24(26), 3573.
16 Qian K, Tay R Y, Nguyen V C, et al. Advanced Functional Materials, 2016, 26(13), 2176.
17 Zhao F, Cheng H, Hu Y, et al. Scientific Reports, 2014, 4, 5882.
18 Nau S, Wolf C, Sax S, et al. Advanced Materials, 2015, 27(6), 1048.
19 Hosseini N R, Lee J S. Advanced Functional Materials, 2015, 25(35), 5586.
20 Jang B C, Seong H, Kim S K, et al. ACS Applied Materials & Interfaces, 2016, 8(20), 12951.
21 Son D I, Kim T W, Shim J H, et al. Nano Letters, 2010, 10(7), 2441.
22 Nagashima K, Koga H, Celano U, et al. Scientific Reports, 2014, 4(1), 5532.
23 Siddiqui G U, Rehman M M, Yang Y J, et al. Journal of Materials Chemistry C, 2017, 5(4), 862.
24 Tsai C L, Xiong F, Pop E, et al. ACS Nano, 2013, 7(6), 5360.
25 Torrezan A C, Strachan J P, Medeiros-Ribeiro G, et al. Nanotechnology, 2011, 22(48), 485203.
26 Lee M J, Lee C B, Lee D, et al. Nature Materials, 2011, 10(8), 625.
27 Han S T, Zhou Y, Roy V A L. Advanced Materials, 2013, 25(38), 5425.
28 Kim R H, Kim H J, Bae I, et al. Nature Communications, 2014, 5, 3583.
29 Ji Y, Zeigler D F, Lee D S, et al. Nature Communications, 2013, 4, 2707.
30 Qian K, Tay R Y, Lin M F, et al. ACS Nano, 2017, 11(2), 1712.
31 Lee S, Kim H, Yun D J, et al. Applied Physics Letters, 2009, 95(26), 262113.
32 Bessonov A A, Kirikova M N, Petukhov D I, et al. Nature Materials, 2015, 14(2), 199.
33 Kang D H, Choi W Y, Woo H, et al. ACS Applied Materials & Interfaces, 2017, 9(32), 27073.
34 Jang B C, Yang S Y, Seong H, et al. Nano Research, 2017, 10(7), 2459.
35 Park Y, Lee J S. ACS Nano, 2017, 11(9), 8962.
36 Kim S, Choi Y K. Applied Physics Letters, 2008, 92(22), 223508.
37 Huber B, Popp P B, Kaiser M, et al. Applied Physics Letters, 2017, 110(14), 143503.
38 Wang G, Raji A R O, Lee J H, et al. ACS Nano, 2014, 8(2), 1410.
39 Lien D H, Kao Z K, Huang T H, et al. ACS Nano, 2014, 8(8), 7613.
40 Kim S, Jeong H Y, Kim S K, et al. Nano Letters, 2011, 11(12), 5438.
41 Wang H, Zou C, Zhou L, et al. Microelectronic Engineering, 2012, 91, 144.
42 Yoo H G, Kim S, Lee K J. RSC Advances, 2014, 4(38), 20017.
43 Park K, Lee J S. Nanotechnology, 2016, 27(12), 125203.
44 Park S, Lee J H, Kim H D, et al. Physica Status Solidi (RRL) - Rapid Research Letters, 2013, 7(7), 493.
45 Cheng C H, Yeh F S, Chin A. Advanced Materials, 2011, 23(7), 902.
46 Zheng Z W, Cheng C H, Chou K I, et al. Applied Physics Letters, 2012, 101(24), 243507.
47 Mondal S, Chueh C H, Pan T M. IEEE Electron Device Letters, 2013, 34(9), 1145.
48 Mondal S, Her J L, Koyama K, et al. Nanoscale Research Letters, 2014, 9(1), 3.
49 Tian H, Chen H Y, Ren T L, et al. Nano Letters, 2014, 14(6), 3214.
50 Liang L, Li K, Xiao C, et al. Journal of the American Chemical Society, 2015, 137(8), 3102.
51 Ali S, Bae J, Lee C H. Current Applied Physics, 2016, 16(7), 757.
52 Yang Y, Yuan G, Yan Z, et al. Advanced Materials, 2017, 29(26), 1700425.
53 Hu Y, Zhang S, Miao X, et al. Advanced Materials Interfaces, 2017, 4(14), 1700131.
54 Moon T, Kang J, Han Y, et al. ACS Applied Materials & Interfaces, 2011, 3(10), 3957.
55 Qian K, Nguyen V C, Chen T, et al. Advanced Electronic Materials, 2016, 2(4), 1500370.
56 Pan L, Ji Z, Yi X, et al. Advanced Functional Materials, 2015, 25(18), 2677.
57 Nagareddy V K, Barnes M D, Zipoli F, et al. ACS Nano, 2017, 11(3), 3010.
58 Jeong H Y, Kim J Y, Kim J W, et al. Nano Letters, 2010, 10(11), 4381.
59 Park Y, Lee J S. ACS Applied Materials & Interfaces, 2017, 9(7), 6207.
60 Cai Y, Tan J, YeFan L, et al. Nanotechnology, 2016, 27(27), 275206.
61 Lee B-H, Bae H, Seong H, et al. ACS Nano, 2015, 9(7), 7306.
62 Wu H C, Yu A D, Lee W Y, et al. Chemical Communications, 2012, 48(73), 9135.
63 Yu A D, Kurosawa T, Lai Y C, et al. Journal of Materials Chemistry C, 2012, 22(38), 20754.
64 Raeis-Hosseini N, Lee J S. ACS Applied Materials & Interfaces, 2016, 8(11), 7326.
65 Seung H M, Kwon K C, Lee G S, et al. Nanotechnology, 2014, 25(43), 435204.
66 Ji Y, Cho B, Song S, et al. Advanced Materials, 2010, 22(28), 3071.
67 Lai Y C, Wang Y X, Huang Y C, et al. Advanced Functional Materials, 2014, 24(10), 1430.
68 Ho Lee M, Yeol Yun D, Min Park H, et al. Applied Physics Letters, 2011, 99(18), 183301.
69 Khurana G, Misra P, Kumar N, et al. The Journal of Physical Chemistry C, 2014, 118(37), 21357.
70 Son D I, Shim J H, Park D H, et al. Nanotechnology, 2011, 22(29), 295203.
71 Rehman M M, Siddiqui G U, Gul J Z, et al. Scientific Reports, 2016, 6, 36195.
72 Siddiqui G U, Rehman M M, Choi K H. Polymer, 2016, 100, 102.
73 Ali S, Bae J, Lee C H, et al. Organic Electronics, 2015, 25, 225.
74 Gu C, Lee J S. ACS Nano, 2016, 10(5), 5413.
75 Choi J, Le Q V, Hong K, et al. ACS Applied Materials & Interfaces, 2017, 9(36), 30764.
76 Park M J, Lee J S. RSC Advances, 2017, 7(34), 21045.
77 Mohapatra S R, Tsuruoka T, Hasegawa T, et al. AIP Advances, 2012, 2(2), 022144.
78 Kinoshita K, Okutani T, Tanaka H, et al. Solid-state Electronics, 2011, 58(1), 48.
79 Won Seo J, Park J W, Lim K S, et al. Applied Physics Letters, 2009, 95(13), 133508.
80 Kim M, Choi K C. IEEE Transactions on Electron Devices, 2017, 64(8), 3508.
81 Yeom S W, You B, Cho K, et al. Scientific Reports, 2017, 7(1), 3438.
82 Lin Y, Xu H Y, Wang Z Q, et al. Applied Physics Letters, 2017, 110(19), 193503.
83 Son D, Chae S I, Kim M, et al. Advanced Materials, 2016, 28(42), 9326.
84 Zhu J X, Zhou W L, Wang Z Q, et al. RSC Advances, 2017, 7(51), 32114.
85 Seok J Y, Song S J, Yoon J H, et al. Advanced Functional Materials, 2014, 24(34), 5316.
86 Yang M, Zhao X, Tang Q, et al. Nanoscale, 2018, 10(38), 18135.
87 Chiang Y C, Kobayashi S, Isono T, et al. Polymer Chemistry, 2019, 10(40), 5452.
88 Awais M N, Kim H C, Doh Y H, et al. Thin Solid Films, 2013, 536, 308.
89 Tobjork D, Osterbacka R. Advanced Materials, 2011, 23(17), 1935.
90 Yi X, Yu Z, Niu X, et al. Advanced Electronic Materials, 2018, 5(2), 1800655.
[1] 林进义,安翔,白鲁冰,徐曼,韦传新,解令海,林宗琼,黄维. 柔性高分子半导体:力学性能和设计策略[J]. 材料导报, 2020, 34(1): 1001-1008.
[2] 崔铮. 柔性混合电子——基于印刷加工实现柔性电子制造[J]. 材料导报, 2020, 34(1): 1009-1013.
[3] 王倩,高能,张天垚,姚光,潘泰松,高敏,林媛. 氧化物功能薄膜器件的柔性化策略[J]. 材料导报, 2020, 34(1): 1014-1021.
[4] 陆骐峰,孙富钦,王子豪,张珽. 柔性人工突触:面向智能人机交互界面和高效率神经网络计算的基础器件[J]. 材料导报, 2020, 34(1): 1022-1049.
[5] 薛秀丽,王世斌,曾超峰,李林安,王志勇. 柔性基底上金属薄膜的失效行为及界面能测试方法研究进展[J]. 材料导报, 2020, 34(1): 1050-1058.
[6] 李法利,李晟斌,曹晋玮,刘宜伟,尚杰,李润伟. 弹性敏感材料与传感器件[J]. 材料导报, 2020, 34(1): 1059-1068.
[7] 骆泽纬,田希悦,范基辰,杨鑫,樊天意,王超伦,吴幸,褚君浩. 智能时代下的新型柔性压阻传感器[J]. 材料导报, 2020, 34(1): 1069-1079.
[8] 高久伟,卢乾波,郑璐,王学文,黄维. 柔性生物电传感技术[J]. 材料导报, 2020, 34(1): 1095-1106.
[9] 杨丹,刘妍,钟正祥,田宫伟,樊文倩,王宇,齐殿鹏. 植入式神经微电极[J]. 材料导报, 2020, 34(1): 1107-1113.
[10] 马飞祥,丁晨,凌忠文,袁伟,孟秀清,苏文明,崔铮. 导电织物制备方法及应用研究进展[J]. 材料导报, 2020, 34(1): 1114-1125.
[11] 宋江,王腾蛟,冯涛,CHAN Siew Yin,荣帆,李鹏,黄维. 柔性电子在糖尿病诊断、治疗及护理中的应用综述[J]. 材料导报, 2020, 34(1): 1126-1134.
[12] 刘建伟,王嘉楠,朱蕾,延卫. 柔性锂硫电池材料:综述[J]. 材料导报, 2020, 34(1): 1155-1168.
[13] 孟锦涛,周良毅,钟芸,沈越,黄云辉. 柔性钠离子电池研究进展[J]. 材料导报, 2020, 34(1): 1169-1176.
[14] 李一帆,刘宇航,孙晋蒙,吴乾鑫,龚昕,杜洪方,艾伟,黄维. 柔性储能器件的电极设计研究进展[J]. 材料导报, 2020, 34(1): 1177-1186.
[15] 李寒,孙志鹏,贾殿赠. 柔性钛箔上生长的自支撑TiO2@NiCo2S4阵列复合材料用作高性能非对称超级电容器电极[J]. 材料导报, 2020, 34(1): 1187-1194.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed