Please wait a minute...
材料导报  2020, Vol. 34 Issue (1): 1059-1068    https://doi.org/10.11896/cldb.19100214
  |
弹性敏感材料与传感器件
李法利1,2,3,李晟斌1,3,4,曹晋玮1,3,刘宜伟1,2,3,,尚杰1,2,3,李润伟1,2,3,4,
1 中国科学院宁波材料技术与工程研究所 & 中科院磁性材料与器件重点实验室,宁波315201
2 中国科学院大学材料科学与光电技术学院,北京 100049
3 中国科学院宁波材料技术与工程研究所 & 浙江省磁性材料及应用技术重点实验室,宁波 315201
4 中国科学院大学未来技术学院,北京 100049
Elastic Sensitive Materials and Sensors
LI Fali1,2,3,LI Shengbin1,3,4,CAO Jinwei1,3,LIU Yiwei1,2,3,,SHANG Jie1,2,3,LI Runwei1,2,3,4,
1 CAS Key Laboratory of Magnetic Materials and Devices,Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences,Ningbo 315201,China
2 College of Materials Science and Opto-Electronic Technology,University of Chinese Academy of Sciences,Beijing 100049,China
3 Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology,Ningbo Institute of Materials Technology and Engineering Chinese Aca-demy of Sciences,Ningbo 315201,China
4 School of Future Technology,University of Chinese Academy of Sciences,Beijing 100049,China
下载:  全 文 ( PDF ) ( 8337KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 柔性电子技术是21世纪的十大新兴科技之一,正在引发新一轮电子技术革命。近年来,人们研发了一系列柔性甚至可拉伸的电子器件,此类器件具有柔韧、抗冲击、高效/低成本制造等优势,在可穿戴或可植入领域具有很好的应用前景。其中,弹性传感器件是信息获取的关键,在人机交互、运动/医疗健康等领域展示着重要的应用前景,而敏感材料、结构及器件设计是弹性传感器的关键。
由于大部分敏感材料是刚性的,其拉伸性能无法满足弹性传感器的要求,因此,弹性传感器的核心挑战之一在于敏感材料的弹性化、多功能化。兼容弹性和功能性的传感器是人们目前关注的焦点。在材料的弹性/可拉伸能力方面,通过有效的结构设计可以使得金属薄膜适应更复杂的力学场景,例如将单轴褶皱改为多轴复杂褶皱;通过优化纳米材料的形貌/结构,可以获得能承受更大形变的复合材料,例如提高纳米线的长度以获得更加复杂稳定的导电网络;通过使用液态金属等本征可拉伸导电材料实现复合材料的高电导和任意拉伸性能。在材料/器件的多功能方面,人们也不断尝试使用多种敏感材料来探测力学、温度、磁场、湿度等多种信号。通过使用磁性敏感材料与高分子基体复合实现对磁场的探测;通过使用热致变色材料在高分子基体表面构建热致变色薄膜可以实现对温度的探测;使用弹性电极制备弹性微流道实现对汗液成分的分析。进一步在弹性系统的层面,研究人员将多种器件集成多功能系统以实现多种信号的感知,并结合仿生策略进一步将这些信号处理成人体神经可识别的信号,实现智能、高效的人机交互体验。
本文归纳了弹性传感材料和器件的研究进展,分别对导电敏感材料、可穿戴器件及其应用场景进行了介绍。通过分析弹性传感器件的发展历程和目前所面临的挑战,希望能使研究者们有一定启发,并对弹性电子器件的未来进行展望,为实现更加灵敏、智能、低成本和用户友好型传感器件提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李法利
李晟斌
曹晋玮
刘宜伟
尚杰
李润伟
关键词:  弹性电子器件  柔性传感器  导电敏感材料  可穿戴器件    
Abstract: Flexible/stretchable electronic technology is one of the ten emerging technologies in the 21st century and is triggering a new round of electronic technology revolution. In recent years, a series of flexible and even stretchable electronic devices have been developed. Such devices have advantages such as flexibility, impact resistance, and efficient / low-cost manufacturing, and have good application prospects in wea-rable or implantable fields. Among them, elastic sensor devices are the key to information acquisition, and show important application prospects in human-machine interaction, sports/medical health and other fields. The design of sensitive materials, structures and devices is the key to elastic sensors.
Since most sensitive materials are rigid and their mechanical properties cannot meet the requirements of elastic sensors, one of the core challenges of elastic sensors is the elasticity and versatility of sensitive materials. Flexible and functionally compatible sensors are currently the focus of attention. In terms of material elasticity/stretchability, through effective structural design, the metal film can be adapted to more complex mechanical scenarios, such as changing uniaxial wrinkles to multiaxial complex wrinkles; by optimizing the morphology/structure of nanomaterials, obtaining composite materials that can withstand greater deformation, such as increasing the length of nanowires to obtain more complex and stable conductive networks; using intrinsically stretchable conductive materials such as liquid metals to achieve high conductivity and arbitrary tensile properties of composite materials. In terms of the versatility of materials/devices, people are also constantly trying to use a variety of sensitive materials to detect a variety of signals such as strain, temperature, magnetic field, humidity, and so on. The magnetic field detection is achieved by using a magnetically sensitive material and a polymer matrix; the thermochromic material is used to construct a thermochromic film on the surface of the polymer substrate to detect the temperature; the elastic electrode is used to prepare elastic microchannels to realize sweat analysis of ingredients. Further at the level of systems, researchers have integrated a variety of devices into a multi-functional system to realize the perception of a variety of signals. Combined with bionic strategies these signal can be process into signals that can be read by human verves. This will be importance to achieve intelligent and efficient human-machine interface.
This article summarizes the research progress of elastic sensing materials and devices, and introduces conductive sensitive materials, wearable devices and their application scenarios. By analyzing the development history and current challenges of elastic sensor devices, we hope that researchers will have some inspiration of elastic electronic devices. And in order to provide more sensitive, intelligent, low-cost, and user-friendly sensors.
Key words:  elastic electronic devices    flexible sensor    conductive sensitive material    wearable devices
                    发布日期:  2020-01-15
ZTFLH:  TP212  
基金资助: 科技部政府间合作项目(2016YFE0126700);国家自然科学基金(51971233;51931011;61774161;61704177;51525103)
通讯作者:  liuyw@nimte.ac.cn; runweili@nimte.ac.cn   
作者简介:  李法利,2016年6月毕业于中南大学,获得理学学士学位。现为中国科学院宁波材料所博士研究生,在李润伟教授的指导下进行研究。目前主要研究领域为液态金属基弹性传感器。
刘宜伟,中科院宁波材料所研究员,博士研究生导师,承担的项目包括科技部、中科院、基金委、浙江省、宁波市以及企业等项目,围绕柔性/弹性敏感材料与传感器的方向,发展了高电导率的弹性导电材料与导体、高柔韧和高精度的弹性应变传感器、磁传感器等,并在人机交互、运动监控和健康监控上实现演示应用,在 Sci. Robot.、Adv. Mater.、Adv. Func. Mater.、ACS Nano等期刊发表SCI论文50余篇;申请发明专利40项,授权26项。先后获得/入选中科院宁波材料技术与工程研究所“春蕾人才”计划;宁波市科学技术二等奖;宁波镇海-中科院青促会创新创业大赛一等奖;中国机器人行业十大科技进展奖;中科院青年创新促进会会员;中国电子学会高级会员。
李润伟,中国科学院宁波材料技术与工程研究所研究员,博士研究生导师,现任中国科学院磁性材料与器件重点实验室主任。2008年入选中科院“百人计划”;2012年荣获亚洲磁学联盟青年学者奖;2015年获得国家杰出青年基金资助;2016年入选国家“万人计划”科技创新领军人才;2018年荣获宁波市科学技术一等奖和“浙江省特级专家”称号。主要从事柔性/弹性磁电功能材料与器件研究,在Chem. Soc. Rev.、Nat. Commun.、Sci. Robot.、Adv. Mater.、Adv. Funct. Mater.、JACS、ACS Nano、PNAS、Phys. Rev. B、Appl. Phys. Lett.等期刊发表SCI论文260余篇;申请专利130余项,授权60余项;主编了《柔性电子材料与器件》和《Flexible and Stretchable Electronics》两本专著。现任中国电子学会会士、亚洲磁学联盟(AUMS)委员会委员、美国电气和电子工程师协会(IEEE)高级会员、中国电子学会应用磁学分会副主任委员、中国物理学会磁学专业委员会副主任委员、全国纳米技术标准化委员会委员等职。
引用本文:    
李法利,李晟斌,曹晋玮,刘宜伟,尚杰,李润伟. 弹性敏感材料与传感器件[J]. 材料导报, 2020, 34(1): 1059-1068.
LI Fali,LI Shengbin,CAO Jinwei,LIU Yiwei,SHANG Jie,LI Runwei. Elastic Sensitive Materials and Sensors. Materials Reports, 2020, 34(1): 1059-1068.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19100214  或          http://www.mater-rep.com/CN/Y2020/V34/I1/1059
1 Lu H, Zhang M, Yang Y, et al. Nature Communcation, 2018,9 (1),3944.
2 Fan Y J, Li X, Kuang S Y, et al. ACS Nano, 2018,12 (9),9326.
3 Guo R, Sun X, Yao S, et al. Advanced Materials Technologies, 2019,4(8),1900183.
4 Fu H, Nan K, Bai W, et al. Nature Materials, 2018,17,268.
5 Miyamoto A, Lee S, Cooray N F, et al. Nature Nanotechnology, 2017,12 (12),907.
6 Dickey M D. Advanced Materials, 2017,29 (27),1606425.
7 Po K Y, Yi Fang, Li Xiuhan. Advanced Materials, 2015,27,3817.
8 Wu C, Wang X, Lin L, et al. ACS Nano, 2016,10 (4),4652.
9 Liang J, Li L, Chen D, et al. Nature Communication, 2015,6, 7647.
10 Someya T, Kato Y, Sekitani T, et al. Proceedings of the National Academy of Sciences, 2005,102 (35),12321.
11 Won M, Choi J S, Dahl K, et al. Nano Letters, 2007,7 (6),1655.
12 Shyu T C, Damasceno P F, Dodd P M, et al. Nature Materials, 2015,14 (8),785.
13 Hyun D C, Park M, Park C, et al. Advanced Materials, 2011,23,2946.
14 Hu W, Niu X, Li L, et al. Nanotechnology, 2012,23 (34),344002.
15 Jeong G S, Baek D H, Jung H C, et al. Nature Communcation, 2012,3, 977.
16 Lee P, Lee J, Lee H, et al. Advanced Materials, 2012,24 (25),3326.
17 Xu F, Zhu Y. Advanced Materials, 2012,24 (37),5117.
18 Shou W, Mahajan B K, Ludwig B, et al. Advanced Materials, 2017,29 (26).
19 Kim Y, Zhu J, Yeom B, et al. Nature, 2013,500 (7460),59.
20 Niu X Z, Peng S L , Liu L Y, et al. Advanced Materials, 2006,19,2682.
21 Rosset S, Niklaus M, Dubois P, et al. Advanced Functional Materials, 2009,19 (3),470.
22 Park M, Im J, Shin M, et al. Nature Nanotechnology, 2012,7 (12),803.
23 Shintake J, Piskarev E, Jeong S H, et al. Advanced Materials Technologies, 2018,3, 1700284.
24 Cheng Y, Wang S L, Wang R R, et al. Journal of Materials Chemistry C, 2014,2,5309.
25 Çiçek B N, Evcin A, Kayali R, et al. Crystal Research and Technology, 2016,51 (1),65.
26 Tybrandt K, Khodagholy D, Dielacher B, et al. Advanced Materials, 2018,30 (15),e1706520.
27 Choi S J, Park J K, Hyun W J, et al. ACS Nano, 2015,9 (6),6626.
28 Feng H, Yang Y, You Y, et al. Chemical Communications (Camb), 2009,15,1984.
29 Cai L, Li J Z, Luan P S, et al. Advanced Functional Materials, 2012,22,5238.
30 Li Y, Zhou B, Zheng G, et al. Journal of Materials Chemistry C, 2018,6 (9),2258.
31 Song P, Qin H, Gao H L, et al. Nature Communication, 2018,9,2786.
32 Zhou J, Yu H, Xu X, et al. ACS Applied Material Interfaces, 2017,9 (5),4835.
33 Christ J F, Aliheidari N, Ameli A. Materials & Design, 2017,131,394.
34 Guo C F, Sun T, Liu Q, et al. Nature Communication, 2014,5,3121.
35 Matsuhisa N, Kaltenbrunner M, Yokota T, et al. Nature Communications, 2015,6,7461.
36 Moon G D, Lim G H, Song J H, et al. Advanced Materials, 2013,25 (19),2707.
37 Wen Y, Wu M, Zhang M, et al. Advanced Materials, 2017,29,1702831.
38 Chun K Y, Oh Y, Rho J, et al. Nature Nanotechnology, 2010,5 (12),853.
39 Chun S, Choi Y, Park W. Carbon, 2017,116,753.
40 Lu Y, Liu Z, Yan H, et al.ACS Applied Materials Interfaces, 2019,11(22),20453.
41 Wang Y, Zhu C, Pfattner R, et al. Science Advances, 2017,3 (3),1602076.
42 Cinar S, Tevis I D, Chen J, et al. Scientific Reports, 2016,6,21864.
43 Fassler A, Majidi C. Lab Chip, 2013,13 (22),4442.
44 Ladd C, So J H, Muth J, et al. Advanced Materials, 2013,25 (36),5081.
45 So J H, Thelen J, Qusba A, et al. Advanced Functional Materials, 2009,19 (22),3632.
46 Yu Z, Shang J, Niu X , et al. Advanced Electronic Materials, 2018,4 (9), 1800137.
47 Wang C, Wang C, Huang Z, et al. Advanced Materials, 2018,30 (50),1801368.
48 Zhou Y, Wu Y, Asghar W, et al. ACS Applied Electronic Materials, 2019,1 (9),1866.
49 Frutiger A, Muth J T, Vogt D M, et al. Advanced Materials, 2015,27 (15),2440.
50 Wu W, Wen X, Wang Z L. Science, 2013,340,952.
51 Wu Y, Liu Y, Zhou Y, et al. Science Robotics, 2018,3,eaat0429.
52 Cañón Bermúdez G S, Fuchs H, Bischoff L, et al. Nature Electronics, 2018,1 (11),589.
53 Gaster R S, Hall D A, Nielsen C H, et al. Nature Medicine, 2009,15 (11),1327.
54 Melzer M, Kaltenbrunner M, Makarov D, et al. Nature Communcation, 2015,6,6080.
55 Zhao J, Guo H, Pang Y K, et al. ACS Nano, 2017,11 (11),11566.
56 Li H, Zhan Q, Liu Y, et al. ACS Nano, 2016,10 (4),4403.
57 Gao W, Emaminejad S, Nyein H Y Y, et al. Nature, 2016,529 (7587),509.
58 He Y, Li W, Han N, et al. Applied Energy, 2019,247,615.
59 Trung T Q, Duy L T, Ramasundaram S, et al. Nano Research, 2017,10 (6),2021.
60 Li F, Qin Q, Zhou Y, et al. Advanced Materials Technologies, 2018,3 (8),1800131.
61 Varga M, Mehmann A, Marjanovic J, et al. Advanced Materials, 2017,29 (44),1703744.
62 Liu Z, Wang H, Huang P, et al. Advanced Materials, 2019,31(35),e1901360.
63 Lee W, Kobayashi S, Nagase M, et al. Science Advances, 2018,4 (10),eaau2426.
64 Wan Y, Qiu Z, Huang J, et al. Small, 2018,14(35),e1801657.
65 Hua Q, Sun J, Liu H, et al. Nature Communcation, 2018,9 (1),244.
66 Huang Z, Hao Y, Li Y, et al. Nature Electronics, 2018,1 (8),473.
67 Kim Y, Chortos A, Xu W, et al. Science, 2018,360 (6392),998.
[1] 冯晓倩, 顾文, 张霞, 蒋浩. 基于有机薄膜晶体管与有机电化学晶体管的生物传感器研究进展[J]. 材料导报, 2019, 33(7): 1243-1250.
[2] 杜斌, 童朝阳, 穆晞惠, 刘志伟, 汪将, 刘帅, 丁志军. 基于复合光波导的生化传感器应用研究进展*[J]. 材料导报, 2017, 31(21): 32-36.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed