Please wait a minute...
材料导报  2017, Vol. 31 Issue (21): 32-36    https://doi.org/10.11896/j.issn.1005-023X.2017.021.005
  材料综述 |
基于复合光波导的生化传感器应用研究进展*
杜斌1, 童朝阳1, 穆晞惠1, 刘志伟1, 汪将1, 刘帅1, 丁志军2
1 国民核生化灾害防护国家重点实验室,北京 102205;
2 防化研究院,北京 102205
Application and Research Progress of Biochemical Sensors Based on Composite Optical Waveguide
DU Bin1, TONG Zhaoyang1, MU Xihui1, LIU Zhiwei1, WANG Jiang1, LIU Shuai1, DING Zhijun2
1 State Key Laboratory of NBC Protection for Civilian, Beijing 102205;
2 Research Institute of Chemical Defense, Beijing 102205
下载:  全 文 ( PDF ) ( 1464KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 光波导在光电技术领域有广泛的应用,复合光波导结构是在平面光波导上涂覆高折射率薄膜而得到的。基于复合光波导的生化传感器具有非标记、可逆、响应速度快等优点,在环境污染监测领域有广阔的应用前景。介绍了复合光波导的结构和机理,综述了基于复合光波导的生化传感器应用研究进展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杜斌
童朝阳
穆晞惠
刘志伟
汪将
刘帅
丁志军
关键词:  复合光波导  光学  生化传感器  薄膜    
Abstract: Optical waveguide is widely used in the field of photoelectric technology, and the composite optical waveguide could be prepared by depositing thin film with high refractive index onto the surface of planer optical waveguide. Biochemical sensors based on composite optical waveguide has a series of features, such as label-free, reversible and fast response, which have a broad application prospect in the field of environmental pollution detection. In this paper, the structure and mechanism of composite optical waveguide, and the application and research progress of biochemical sensors based on composite optical waveguide are reviewed.
Key words:  composite optical waveguide    optical    biochemical sensor    thin film
               出版日期:  2017-11-10      发布日期:  2018-05-08
ZTFLH:  TP212  
基金资助: 国家重点研发计划(2016YFF0103103);国家自然科学基金(21402237);国民核生化灾害防护国家重点实验室基础研究基金项目(SKLNBC2012-01)
通讯作者:  童朝阳,男,1972年生,博士,研究员,主要从事生物检测技术的研究 E-mail:billzytong@126.com   
作者简介:  杜斌:男,1987年生,博士研究生,主要从事侦检材料与技术的研究
引用本文:    
杜斌, 童朝阳, 穆晞惠, 刘志伟, 汪将, 刘帅, 丁志军. 基于复合光波导的生化传感器应用研究进展*[J]. 材料导报, 2017, 31(21): 32-36.
DU Bin, TONG Zhaoyang, MU Xihui, LIU Zhiwei, WANG Jiang, LIU Shuai, DING Zhijun. Application and Research Progress of Biochemical Sensors Based on Composite Optical Waveguide. Materials Reports, 2017, 31(21): 32-36.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.021.005  或          http://www.mater-rep.com/CN/Y2017/V31/I21/32
1 Bo S, Wang J, Zhao H, et al. LaF3∶Er,Yb doped sol-gel polymeric optical waveguide amplifiers[J]. Appl Phys B: Lasers Opt, 2008,91:79.
2 Mitani M, Yamashita K, Fukui T, et al. Polymer optical waveguide composed of europium-aluminum acrylate composite core for compact optical amplifier and laser[J].Proc SPIE, 2015,9365:93650Q.
3 Huang L, Tsang K, Pun E Y B, et al. Sm3+-doped polymer optical waveguide amplifiers[J]. Opt Commun, 2010,283:1363.
4 Voznesenskiy S S, Sergeev A A, Mironenko A Y, et al. Integrated-optical sensors based on chitosan waveguide films for relative humi-dity measurements[J]. Sens Actuators B, 2013,188:482.
5 Li Q, Jia Y, Dai L, et al. Controlled rod nanostructured assembly of diphenyalanine and their optical waveguide properties[J]. ACS Nano, 2015,9(3):2689.
6 Oh M C, Kim K J, Lee J H. Polymeric waveguide biosensors with calixarene monolayer for detecting potassium ion concentration[J]. Appl Phys Lett, 2006,89:251104.
7 Zhang C, Zhao Y S, Yao J. Optical waveguides at micro/nanoscale based on functional small organic molecules[J]. Phys Chem Chem Phys, 2011,13:9060.
8 Nagamura T, Adachi T, Sasaki K, et al. Highly sensitive detection of transient absorption in dye-doped ultrathin polymer films by the TiO2/K+composite optical waveguide method upon pulsed laser excitation[J]. Talanta, 2005,65:1071.
9 Zhong N, Liao Q, Zhu X, et al. Temperature-independent polymer optical fiber evanescent wave sensor[J]. Sci Rep, 2015,5:11508.
10Zhou Wei, Zhang Wei, Wang Zan, et al. Progress on fiber-optic evanescent wave biosensor technique in food safety detection[J].J Food Saf Qual, 2014,5(12):3971(in Chinese).
周巍, 张巍, 王赞, 等. 光纤倏逝波生物传感器在食品安全检测中应用进展[J]. 食品安全质量检测学报, 2014,5(12):3971.
11Latifi H, Ziball M I, Hosseini S M, et al. Nonadiabatic tapered optical fiber for biosensor applications[J]. Photonic Sens, 2012,2(4):340.
12Adányi N, Majer-Baranyi K, Nagy A, et al. Optical waveguide lightmode spectroscopy immunosensor for detection of carp vitellogenin[J]. Sens Actuators B, 2013,176:932.
13Murphy C, Stack E, Krivelo S, et al. Detection of the cyanobacterial toxin, microcystin-LR, using a novel recombinant antibody-based optical-planar waveguide platform[J]. Biosens Bioelectron, 2015,67:708.
14Xu J, Suarez D, Gottfried D S. Detection of avian influenza virus using an interferometric biosensor[J]. Anal Bioanal Chem, 2007,389:1193.
15Majer-Baranyi K, Zalán Z, M?rtl M, et al. Optical waveguide lightmode spectroscopy technique-based immunosensor development for aflatoxin B1 determination in spice paprika samples[J]. Food Chem, 2016,211:972.
16Bradshaw J T, Mendes S B, Saavedra S S. Planar integrated optical waveguide spectroscopy[J]. Anal Chem,2005,77(1):28A.
17Shankaran D R, Gobi K V, Miura N. Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest[J]. Sens Actuators B, 2007,121:158.
18Washburn A L, Gunn L C, Bailey R C. Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators[J]. Anal Chem, 2009,81(22):9499.
19Yang T, Zheng C, Zhao S, et al. Optimized design and fabrication of Mach-Zehnder interferometer sensor in polymer technology[J]. Fiber Integr Opt, 2013,32:153.
20Hiltunen M, Hiltunen J, Stenberg P, et al. Polymeric slot waveguide interferometer for sensor applications[J]. Opt Express, 2014,22(6):7229.
21Gonzalez-Guerrero A B, Maldonado J, Herranz S, et al. Trends in photonic lab-on-chip interferometric biosensors for point-of-care diagnostics[J]. Anal Methods, 2016,8: 8380.
22Mukundan H, Anderson A S, Grace W K, et al. Waveguide-based biosensors for pathogen detection[J]. Sensors, 2009,9:5783.
23Qi Z M, Liu R P, Lu D F. High-sensitivity biochemical analyzer based on composite-optical-waveguide polarimetric interferometer[J]. Chin J Lasers, 2011,38(1):0108001(in Chinese).
祁志美, 刘瑞鹏, 逯丹凤. 基于复合光波导偏振干涉技术的高灵敏度生化检测仪[J]. 中国激光, 2011,38(1):0108001.
24Adányi N, Majer-Baranyi K, Berki M, et al. Development of immunosensors based on optical waveguide lightmode spectroscopy (OWLS) technique for determining active substance in herbs[J]. Sens Actuators B, 2017,239:413.
25Muriano A, Thayil K N A, Salvador J P, et al. Two-photon fluorescent immunosensor for androgenic hormones using resonant gra-ting waveguide structures[J]. Sens Actuators B, 2012,174:394.
26Kozma P, Kehl F, Ehrentreich-F?rster E, et al. Integrated planar optical waveguide interferometer biosensors: A comparative review[J]. Biosens Bioelectron, 2014,58:287.
27Wang B L, Hu L L, Zhang L Y. Application of sol-gel technique to the preparation of the planar waveguide[J]. Piezoelectr Acoustoopt, 2008,30(5):594(in Chinese).
王宝玲, 胡丽丽, 张丽艳. 溶胶-凝胶法在平面光波导薄膜制备中的应用[J]. 压电与声光, 2008,30(5):594.
28Liu L H, Zhou X H, Xu W Q, et al. Highly sensitive detection of sulfadimidine in water and dairy products by means of an evanescent wave optical biosensor[J]. RSC Adv, 2014,4:60227.
29Qi Z M, Itoh K, Murabayashi M, et al. A composite optical waveguide-based polarimetric interferometer for chemical and biolo-gical sensing applications[J]. J Lightwave Technol, 2000,18(8):1106.
30Mamtimin G, Yimit A. NiO-In2O3 composite thin film/tin-diffused glass optical waveguide sensor and its gas sensitivity properties[J]. Chin Sci Bull, 2012,57(1):47(in Chinese).
姑丽各娜·买买提依明, 阿布力孜·伊米提. NiO-In2O3薄膜/锡掺杂玻璃光波导传感元件及其气敏性[J]. 科学通报, 2012,57(1):47.
31Mohemaiti M, Keram A, Nezamidin P, et al. Preparation of zinc oxide thin film/tin-diffused optical waveguide sensor and gas-sensing detection[J]. Acta Chim Sin, 2011,69(15):1840(in Chinese).
米日古力·莫合买提, 阿斯娅·克里木, 帕提曼·尼扎木丁, 等. 溶胶-凝胶法制备氧化锌薄膜/锡掺杂玻璃光波导及其气敏性研究[J]. 化学学报, 2011,69(15):1840.
32Qi Z M, Yimit A, Itoh K, et al. Composite optical waveguide composed of a tapered film of bromothymol blue evaporated onto a potassium ion-exchanged waveguide and its application as a guided wave absorption-based ammonia-gas sensor[J]. Opt Lett, 2001,26(9):629.
33Rahman E, Kerim A, Yasin P, et al. MB-stearic acid composite film optical waveguide sensor for the detection of HCl gas[J]. Chem J Chin Universities, 2012,33(10):2173(in Chinese).
艾拜拉·热合曼, 阿斯娅·克里木, 帕提曼·亚森, 等. MB-硬脂酸复合薄膜光波导传感器检测氯化氢气体[J]. 高等学校化学学报, 2012,33(10):2173.
34Qi Z M, Honma I, Zhou H. Chemical gas sensor application of open-pore mesoporous thin films based on integrated optical polarimetric interferometry[J]. Anal Chem, 2006,78:1034.
35Yimit A, Itoh K, Murabayashi M. Detection of ammonia in the ppt range based on a composite optical waveguide pH sensor[J]. Sens Actuators B, 2003,188:239.
36Yimit A, Talip D, Tursun E, et al. The application of highly sensitive composite optical waveguide in the ozone detection[J]. Chin J Anal Chem, 2005,33(11):1663(in Chinese).
阿布力孜·伊米提, 迪丽努尔·塔力甫, 艾尔肯·吐尔逊, 等. 高灵敏复合光波导在检测臭氧的应用研究[J]. 分析化学, 2005,33(11):1663.
37Yimit A, Huang X, Xu Y, et al. Development of a composite optical waveguide sensor for Immunoglobulin G[J]. Chem Lett, 2003,32(1):86.
38Lu D F, Qi Z M. Characterization and chemical/biosensing application of a high-sensitivity integrated optical polarimetric interferometer[J]. Acta Phys Sin, 2012,61(11):114212(in Chinese).
禄丹凤, 祁志美. 高灵敏度集成光偏振干涉仪特性及生化传感应用研究[J]. 物理学报, 2012,61(11):114212.
39Lu D F, Qi Z M, Liu R P. An interferometric biosensor composed of a prism-chamber assembly and a composite waveguide with a Ta2O5 nanometric layer[J]. Sens Actuators B, 2011,157:575.
40Kadir R, Yimit A, Ablat H, et al. Optical waveguide BTX gas sensor based on polyacrylate resin thin film[J]. Environ Sci Technol, 2009,43(13):5113.
41Abdurahman R, Yimit A, Ablat H, et al. Optical waveguide sensor of volatile organic compounds based on PTA thin film[J]. Anal Chim Act, 2010,658:63.
42Zhu M, Yimit A. The preparation and gas sensitive research of M-cresol purple-PVP composite film/K+ion-exchanged glass optical waveguide sensor[J].Chin J Sens Actuators, 2015,28(9):1292(in Chinese).
朱敏,阿布力孜·伊米提. 间甲酚紫-PVP复合薄膜/K+交换玻璃光波导元件的制备及其气敏研究[J]. 传感技术学报, 2015,28(9):1292.
43Turdi G, Nizamudin P, Yan Y, et al. Tetraphenylporphyrin film optical waveguide OWG sensor for detect volatile organic compounds gas[J].Chin J Sens Actuators, 2016,29(7):966(in Chinese).
姑力米热·吐尔地, 帕提曼·尼扎木丁, 燕音, 等.四苯基卟啉薄膜/K+-交换玻璃光波导传感器的研制及其气敏性研究[J]. 传感技术学报, 2016,29(7):966.
[1] 张甄, 王宝冬, 徐文强, 秦绍东, 孙琦. 黑色二氧化钛纳米材料研究进展[J]. 材料导报, 2019, 33(z1): 8-15.
[2] 王骏齐, 张衍敏, 陈天弟, 王恒, 田遴博, 冯超, 夏金宝, 张飒飒. 不同浓度Ag掺杂ZnS的电子结构及光学性质的第一性原理研究[J]. 材料导报, 2019, 33(z1): 33-36.
[3] 古丽妮尕尔·阿卜来提, 麦合木提·麦麦提, 阿比迪古丽·萨拉木, 买买提热夏提·买买提, 吴赵锋, 孙言飞. Ni 掺杂对BiFeO3薄膜晶体结构和磁性的影响[J]. 材料导报, 2019, 33(z1): 108-111.
[4] 原禧敏, 杨宏伟, 李郁秀, 巢云秀, 李耀, 陈家林, 陈力. 无卤素离子辅助合成纳米银线及其在柔性透明导电薄膜中的应用[J]. 材料导报, 2019, 33(z1): 300-302.
[5] 薛秀丽, 曾超峰, 王世斌, 李林安, 王志勇. 溶剂对PMMA基底上金属薄膜形貌的影响[J]. 材料导报, 2019, 33(z1): 412-415.
[6] 冯晓倩, 顾文, 张霞, 蒋浩. 基于有机薄膜晶体管与有机电化学晶体管的生物传感器研究进展[J]. 材料导报, 2019, 33(7): 1243-1250.
[7] 温变英, 段磊. PEI/Ni梯度电磁屏蔽薄膜材料耐腐蚀性研究[J]. 材料导报, 2019, 33(6): 1065-1069.
[8] 孙淑红, 朱艳, 青红梅, 胡永茂, 杨斌. 亚稳相纤锌矿铜锌锡硫(WZ-CZTS)纳米晶的合成及光伏应用的研究现状与进展[J]. 材料导报, 2019, 33(5): 761-769.
[9] 崔龙辰, 王军军, 黄伟九. 类聚合物碳薄膜的制备及其摩擦学研究进展[J]. 材料导报, 2019, 33(5): 797-804.
[10] 阿比迪古丽·萨拉木, 吾尔尼沙·依明尼亚孜, 买买提热夏提·买买提, 吴钊峰. 掺杂对BiFeO3薄膜电、磁特性影响综述[J]. 材料导报, 2019, 33(5): 791-796.
[11] 周超, 李得天, 周晖, 张凯锋, 曹生珠. MEMS器件真空封装用非蒸散型吸气剂薄膜研究概述[J]. 材料导报, 2019, 33(3): 438-443.
[12] 张化福,沙浩,吴志明,蒋亚东,王操,孙艳,景强. 太赫兹波段二氧化钒薄膜的研究进展[J]. 材料导报, 2019, 33(15): 2513-2523.
[13] 孙科学, 常月欣, 成谢锋. xBiInO3-(1-x)PbTiO3薄膜的横向压电特性[J]. 材料导报, 2019, 33(14): 2299-2304.
[14] 王月敏, 商磊, 闫相桥, 李新刚, 李垚. 基于纳米压痕技术的光子晶体薄膜实验研究与有限元模拟[J]. 材料导报, 2019, 33(14): 2283-2286.
[15] 沈韬,柴鲜花,孙淑红,朱艳. 微波法制备铜锌锡硫的研究进展[J]. 材料导报, 2019, 33(13): 2159-2166.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed