Please wait a minute...
材料导报  2019, Vol. 33 Issue (7): 1243-1250    https://doi.org/10.11896/cldb.18010190
  高分子与聚合物基复合材料 |
基于有机薄膜晶体管与有机电化学晶体管的生物传感器研究进展
冯晓倩, 顾文, 张霞, 蒋浩
上海工程技术大学材料工程学院,上海 201620
Advances in Biosensors Based on Organic Thin Film Transistors and Organic Electrochemical Transistors
FENG Xiaoqian, GU Wen, ZHANG Xia, JIANG Hao
School of materials Engineering, Shanghai University of Engineering Science, Shanghai 201620
下载:  全 文 ( PDF ) ( 15180KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 生物传感器是一门由生物、化学、物理、医学、电子技术等多种学科互相渗透成长起来的高新技术,在国民经济的各个领域如食品、制药、化工、临床检验、生物医学、环境监测等方面有着重要应用。生物传感器选择性好、灵敏度高、分析速度快、成本低,可在复杂的体系中进行在线连续监测,特别是具有高度自动化、微型化与集成化的特点,其在近几十年获得了蓬勃而迅速的发展。在生物传感器领域,有机电子器件具有广阔的应用前景,特别是在低成本、一次性、便携、柔性弯曲等方面,有机电子器件显示出无可比拟的优势。
在有机电子学领域,引起广泛关注和研究的包括有机薄膜晶体管(Organic thin film transistors, OTFTs)生物传感器和有机电化学晶体管(Organic electrochemical transistors, OECTs)生物传感器两种技术。其中,OTFTs生物传感器采用全固态薄膜制备,由于其制备工艺简单且可与传统半导体加工工艺相兼容,因而方便集成。此外,OTFTs生物传感器的检测单元多样化,不仅限于有机半导体层,其栅极和源漏电极都可用作生物检测。目前,在该生物传感器中已成功应用的高性能有源层材料有并五苯(Pentacene)、聚(3-己基噻吩)(P3HT)和聚苯胺(PANI)等。研究工作包括DNA表面固定方法改进、传感器结构设计与灵敏度优化、新型扩展栅极结构等。由于大多数检测在非溶液体系中进行,其检测的便捷性和灵敏度受到了一定限制。为了解决溶液体系下的检测问题,OECTs生物传感器被提出。该传感器不仅具有工作电压低(一般小于1 V)、电化学活性强以及可在溶液环境下工作等优点,而且其沟道与栅极的距离可按需调节。OECTs生物传感器的出现为发展高灵敏、高特异性的生物分析检验方法注入了活力。目前,OECTs生物传感器已成功应用于脱氧核糖核酸(Deoxyribonucleic acid, DNA)、抗原和细菌等物质的检测。虽然微流控系统的OECT传感器阵列也已成功检测葡萄糖和乳酸,但考虑到其实际制备过程以及检测环境,OECTs传感器在集成方面的发展较为困难。
本文归纳了基于OTFTs和OECTs两种类型生物传感器技术及其发展现状。根据检测物质分类,本文对两种生物传感器在葡萄糖、DNA、抗体抗原、细胞、多巴胺等生物检测应用中进行了详细描述,介绍了其传感机制和检测能力。预计随着有机电子技术的发展,有机晶体管将会在生物检测方面发挥更为重要的作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
冯晓倩
顾文
张霞
蒋浩
关键词:  生物传感器  有机薄膜晶体管  有机电化学晶体管  灵敏度    
Abstract: Biosensor is a novel high techno-logy that derived from multidiscipline including biology, chemistry, physics, medicine, and electronic techno-logy. It has vast application in diverse field of the national economy such as food, pharmaceuticals, chemical industry, clinical testing, biomedicine, and environmental monitoring. Featured by high selectivity, high sensitivity, fast analysis speed, low cost, and continuous on-line monitoring in complex systems, especially high degree of automation, miniaturization, and integration, biosensors have developed vigorously and swiftly in recent decades. In the field of biosensors, organic electronic devices exhibit broad application prospects and unparalleled advantages, especially in low-cost, disposable, portable, flexible bending,etc.
In the field of organic electronics,there are two kind of biosensors, namely organic thin film transistors (OTFTs) biosensors and organic electrochemical transistors (OECTs) biosensors, that aroused widespread concerns and interests. OTFTs biosensors are made of all-solid-state film, which is convenient to integrate because of its process simplicity and compatibility with traditional semiconductor processing technology. In addition, OTFTs biosensors possess diversified detection units, which is not limited to the organic semiconductor layer and include gate and source leakage electrodes. At present, high-performance active layer materials like pentacene, poly(3-hexylthiophene) (P3HT), and polyaniline (PANI) have been successfully used in the biosensor. Research work mainly lies in improvements in DNA surface immobilization methods, sensor structure design and sensitivity optimization, and new extended gate structures. There is a certain limitation for the detection in convenience and sensitivity, due to the fact that most of the tests are implemented in a non-aqueous system. For the sake of achieving the detection in aqueous system, OECTs biosensor is proposed. OECTs sensors are not only has the superior in low operating voltage (generally less than 1 V), strong electrochemical activity and capability for working in aqueous environment, but also capable of adjusting the distance between the channel and the gate as required. The emergence of OECTs biosensors has played a vital role in the development of highly specific bioassay test method. At pre-sent, OECTs biosensors have been successfully applied to the detection of deoxyribonucleic acid (DNA), antigens and bacteria. Although the OECT sensor array of the microfluidic system has also successfully detected glucose and lactic acid, it is difficult to develop the OECTs sensor, considering its actual preparation process and detection environment.
In this article, we attempt to provide an overview of biosensors based on organic thin film transistors and organic electrochemical transistors. According to the classification of test objects, the applications of these two biosensors in detecting glucose, DNA, antibody antigens, cells and dopamine are described in detail. meanwhile, their sensing mechanisms and detection capabilities are introduced. It is expected that with the deve-lopment of organic electronic technology, organic transistors will play a more important role in biological detection.
Key words:  biosensors    organic thin film transistor    organic electrochemical transistor    sensitivity
               出版日期:  2019-04-10      发布日期:  2019-04-10
ZTFLH:  TP212  
基金资助: 国家自然科学基金(11704242;11705115);上海市高校青年教师培养资助计划(ZZGCD16020)
通讯作者:  guwen@sues.edu.cn   
作者简介:  冯晓倩,2016年6月毕业于潍坊学院,获得工学学士学位。现为上海工程技术大学材料工程学院硕士研究生,在顾文老师的指导下进行研究。目前主要研究领域为有机薄膜晶体管及生物传感器。顾文,上海工程技术大学讲师。2015年7月在上海大学取得博士学位,主要从事半导体器件如有机薄膜晶体管和发光二极管的研究。近年来,在半导体器件领域发表论文20余篇,包括Applied Physics Letters、Organic Electronics、Applied Surface Science和Solid-State Electronics等期刊。
引用本文:    
冯晓倩, 顾文, 张霞, 蒋浩. 基于有机薄膜晶体管与有机电化学晶体管的生物传感器研究进展[J]. 材料导报, 2019, 33(7): 1243-1250.
FENG Xiaoqian, GU Wen, ZHANG Xia, JIANG Hao. Advances in Biosensors Based on Organic Thin Film Transistors and Organic Electrochemical Transistors. Materials Reports, 2019, 33(7): 1243-1250.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18010190  或          http://www.mater-rep.com/CN/Y2019/V33/I7/1243
1 Shirakawa H, Louis E J, macdiarmid A G, et al.Journal of the Chemical Society Chemical Communications, 1977, 16(16), 578.
2 Tang C W, Vanslyke S A.Applied Physics Letters, 1987, 51(12), 913.
3 Friend R H, Gymer R W, Holmes A B, et al.Nature, 1999, 397, 121.
4 Li G, Shrotriya V, Huang J, et al.Nature materials, 2005, 4(11), 864.
5 Jin Y K, Lee K, Coates N E, et al.Science, 2007, 317(5835), 222.
6 Konig U, Gluck m, Hock G.Advanced materials, 1998, 10(5), 365.
7 Facchetti A, Yoon m H, marks T.Advanced materials, 2010, 17(14), 1705.
8 Sirringhaus H, Tessler N, Friend R H.Science, 1998, 280(5370), 1741.
9 Dodabalapur A, Bao Z, makhija A, et al. Applied Physics Letters, 1998, 73(2), 142.
10 Baude P F, Ender D A, Haase m A, et al. Applied Physics Letters, 2003, 82(22), 3964.
11 Steudel S, myny K, Arkhipov V, et al.Nature materials, 2005, 4(8), 597.
12 Janata J, Josowicz m.Nature material, 2003, 2(1), 19.
13 Sun Z, Li J, Liu C, et al.Advanced materials, 2011, 23(32), 3648.
14 Yan F, Tang H.Expert Review of molecular Diagnostics, 2010, 10(5), 547.
15 mok S m, Yan F, Chan H L W.Applied Physics Letters, 2008, 93(2), 256.
16 mannsfeld S C, Tee B C, Stoltenberg R m, et al.Nature materials, 2010, 9(10), 859.
17 Johnson K S, Needoba J A, Riser S C, et al.Chemical Reviews, 2007, 107(2), 623.
18 Bartic C, Borghs G.Analytical & Bioanalytical Chemistry, 2006, 384(2), 354.
19 Berggren m, Richter-Dahlfors A. Advanced materials, 2007, 19(20), 3201.
20 Yang S Y, Cicoira F, Byrne R, et al.Chemical Communications, 2010, 46(42), 7972.
21 Liu J, Agarwal m, Varahramyan K.Sensors & Actuators B Chemical, 2009, 135(1), 195.
22 Elkington D, Belcher W J, Dastoor P C, et al.Applied Physics Letters, 2014, 105(4), 1121.
23 Zhang Q, Subramanian V.Biosensors & Bioelectronics, 2007, 22(12), 3182.
24 Zhang Q, Jagannathan L, Subramanian V.Biosensors & Bioelectronics, 2010, 25(5), 972.
25 Lin T W, Kekuda D, Chu C W.Biosensors & Bioelectronics, 2010, 25(12), 2706.
26 Khan H U, Roberts m E, Johnson O, et al. Advanced materials, 2010, 22(40), 4452.
27 maddalena F, Kuiper m J, Poolman B, et al. Journal of Applied Physics, 2010, 108(12), 446.
28 magliulo m, mallardi A, Gristina R, et al. Analytical Chemistry, 2013, 85(8), 3849.
29 Kim H, Jang m, Lee S, et al. Advanced Functional materials, 2015, 25(30), 4882.
30 Kong H, Jung B J, Sinha J, et al.Chemistry of materials, 2012, 24(14), 2621.
31 Bernards D, malliaras G.Advanced Functional materials, 2010, 17(17), 3538.
32 Bernards D A, macaya D J, Nikolou m, et al.Journal of materials Che-mistry, 2007, 18(1), 116.
33 Contractor A Q, Hoa D T, Kumar T N S, et al. Analytical Chemistry, 1992, 64(21), 2645.
34 Tarabella G, Santato C, Yang S Y, et al.Applied Physics Letters, 2010, 97(12), 205.
35 Lin P, Yan F, Chan H L.ACS Applied materials & Interfaces, 2010, 2(6),1637.
36 Cicoira F, Sessolo m, Yaghmazadeh O, et al. Advanced materials, 2010, 22(9), 1012.
37 Yaghmazadeh O, Cicoira F, Bernards D A, et al.Journal of Polymer Science Part B Polymer Physics, 2015, 49(1), 34.
38 Yang S Y, Cicoira F, Byrne R, et al.Chemical Communications, 2010, 46(42), 7972.
39 Kim Y, Do J, Kim J, et al.Japanese Journal of Applied Physics, 2010, 49(49), 01AE10(1-6).
40 Yang S Y, Defranco J A, Sylvester Y A, et al.Lab on a Chip, 2009, 9(5), 704.
41 Tang H, Feng Y, Lin P, et al.Advanced Functional materials, 2011, 21(12), 2264.
42 Liao C, Zhang m, Niu L, et al. Journal of materials Chemistry B, 2013, 1, 3820.
43 Liao C, Zhang m, Niu L, et al.Journal of materials Chemistry B, 2014, 2, 191.
44 Tang H, Feng Y, Lin P, et al.Advanced Functional materials, 2011, 21(12), 2264.
45 Lin P, Luo X, Hsing I m, et al.Advanced materials, 2011, 23(35), 4035.
46 Kim D J, Lee N E, Park J S, et al.Biosensors & Bioelectronics, 2010, 25(11), 2477.
47 Bolin m H, Svennersten K, Nilsson D, et al.Advanced materials, 2009, 21(43), 4379.
48 Lin P, Yan F, Yu J, et al.Advanced materials, 2010, 22(33), 3655.
49 Tang H, Lin P, Chan H L W, et al.Biosensors & Bioelectronics, 2011, 26(11), 4559.
50 Tarabella G, Balducci A G, Coppedè N, et al.Biochimica et Biophysica Acta, 2013, 1830(9), 4374.
51 Liao J, Lin S, Yang Y, et al.Sensors & Actuators B Chemical, 2015, 208, 457.
52 Xiong C, Wang Y, Qu H, et al.Sensors & Actuators B Chemical, 2017, 246, 235.
[1] 马依拉·克然木, 李首城, 胡天浩, 崔静洁. 石墨烯的电化学生物传感器研究进展[J]. 材料导报, 2019, 33(z1): 57-61.
[2] 陈卫丰, 吕果, 陶华超, 陈少娜, 李德江, 代忠旭. 石墨烯量子点的制备及在生物传感器中的应用研究进展[J]. 材料导报, 2019, 33(7): 1156-1162.
[3] 张仲达, 杨文芳. 层层自组装技术的研究进展及应用情况*[J]. 《材料导报》期刊社, 2017, 31(5): 40-45.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed