Please wait a minute...
材料导报  2020, Vol. 34 Issue (1): 1069-1079    https://doi.org/10.11896/cldb.19100149
  |
智能时代下的新型柔性压阻传感器
骆泽纬,田希悦,范基辰,杨鑫,樊天意,王超伦,吴幸,褚君浩
华东师范大学,上海市多维度信息处理重点实验室,上海200241
Novel Flexible Resistive Sensors in the Age of Intelligence
LUO Zewei,TIAN Xiyue,FAN Jichen,YANG Xin,FAN Tianyi,WANG Chaolun,WU Xing,CHU Junhao
Shanghai Key Laboratory of Multidimensional Information Processing,East China Normal University,Shanghai 200241,China
下载:  全 文 ( PDF ) ( 8324KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 传感器是能将外部物理激励转换为电信号的核心器件。随着物联网、生物医疗、人工智能等新兴领域的发展,传感器的性能与其适用环境的标准愈来愈高,全球的科学技术研究学者在不断地探索各类新型传感器技术。近年来,具有新材料、新结构、高性能的柔性传感器已被广泛报道,其材料选择、结构控制、制备工艺流程等技术不断完备。其中,柔性压阻传感器的工作原理是将一系列的外加压力信号转换为电信号。性能优异的柔性压阻传感器具有高灵敏度、高线性度、大测量范围、快速响应和高重复性等特点。
传感器的微观结构是决定其性能的主要调控因素。传统的传感器表征测试方法只能静态地测量器件的结构,却无法在器件工作状态下实时地、动态地监测材料结构和化学成分的变化对其电学性能的影响。原位表征测量技术的出现可以解决上述问题,为进一步提升传感器性能提供了直观的实验支持。与此同时,单一传感器不能满足信息时代的技术需求,阵列化、智能集成系统成为未来传感器技术发展的主流趋势。智能传感系统不仅具备柔性压阻传感器采集信号的功能,还将传感器与设计的集成电路相连,通过电路对采集到的数据信息进行传输与处理,使用人工智能神经网络算法进行计算,完成数据的智能分析与处理,最终将数据传输到终端显示,展示出人体生理健康信息监测所需要的信息与智能化分析结果。
本文主要归纳了近年来柔性压阻传感器的智能化进展,结合原位表征技术阐明了柔性压阻传感器的微观结构与性能的关联机制,探讨了基于柔性压阻传感器的智能系统构筑,最后展望了柔性压阻传感器与多功能智能传感系统未来的发展趋势及研究重点。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
骆泽纬
田希悦
范基辰
杨鑫
樊天意
王超伦
吴幸
褚君浩
关键词:  柔性电子学  压阻传感器  原位表征  智能系统    
Abstract: Sensor is an important device to convert external physical excitation into electrical signals. With the development of Internet of Things, biomedical, artificial intelligence, the requirements of sensor properties are getting stringent. Researchers are constantly developing novel sensors to meet the growing demand. Recently, researchers have actively carried out relevant work on flexible sensors with new materials, new structures and high performance. The technologies such as material selection, structure control and preparation process are continuously deve-loped. The sensing principle of the flexible resistive sensor is to convert the applied pressure signals into electrical signals. The flexible resistive sensor with excellent performance has high sensitivity, high linearity, large working range, fast response and repeatability.
The microstructure of the sensor is the main regulator of the property. The traditional sensor characterization method can only measure the structure of the device statically, but it cannot dynamically monitor the change of material structure and chemical composition which influence the electronic property under the working condition in real time. The emergence of in situ characterization technology can solve the problems above and provide intuitive experimental support for improving sensor property. At the same time, a simple sensor cannot meet the technical needs in the age of information. It is no doubt that intelligent integrated and arrayed system is the trend of future sensor technology development. The intelligent sensing system possesses the function of collecting signals by the flexible resistive sensor and connecting the sensor with the designed integrated circuit. After transmitting and processing, the data is processed by artificial intelligence neural network algorithm. The results are transmitted to the intelligent display terminals where users can check the information and data analysis result.
In this review, we place particular emphasis on the progress of intelligent flexible resistive sensors. The microstructure and property research in sensors using the in situ characterization technique is clarified. Additionally, how to construct the intelligent sensing system based on flexible resistive sensor is also illustrated. Finally, we summarize recent development trends and application forecasts, especially the challenges in combination with intelligent system.
Key words:  flexible electronics    resistive sensor    in situ characterization    intelligent system
                    发布日期:  2020-01-15
ZTFLH:  TN40  
基金资助: 国家自然科学基金面上项目(61574060);上海市科委项目(19ZR1473800);上海青年科技启明星(17QA1401400);中国科协青年人才托举工程;上海高校特聘教授(东方学者);中央高校基本科研专项基金
通讯作者:  xwu@ee.ecnu.edu.cn   
作者简介:  骆泽纬,2018年6月毕业于上海大学,获得工学学士学位。现为上海市华东师范大学多维度信息处理重点实验室在读博士研究生,在吴幸研究员的指导下进行研究。目前主要研究方向为柔性智能传感器。
吴幸,华东师范大学紫江青年研究员、博士研究生导师。2008年获得西安交通大学学士学位,2012年获得新加坡南洋理工大学博士学位(导师Prof. Kinleong Pey),随后在新加坡科技与设计大学和东南大学从事研究工作,主要从事传感器相关工作。在国际一流期刊Nature Communications、Advanced Materials、Small等发表论文90余篇,引用率超过3000次。先后主持参与国家和省部级课题10余项。获得授权专利30余项。
褚君浩,博士,中国科学院院士。现任中国科学院上海技术物理研究所研究员,华东师范大学教授,《红外与毫米波学报》主编,中科院学部主席团成员,国际光学工程学会(SPIE)会士;曾任第十、十一届全国人大代表,上海市政府参事、上海市科协副主席等。获得国家自然科学奖三次、部委级自然科学奖或科技进步奖12次。2014年被评为十佳全国优秀科技工作者,2017年获首届全国创新争先奖章;2017年被评为“光荣与力量”感动上海年度人物。发表学术论文500余篇,中英文专著3部,编著10部,科普书籍2本。近年来从事柔性智能传感系统相关的交叉学科研究。
引用本文:    
骆泽纬,田希悦,范基辰,杨鑫,樊天意,王超伦,吴幸,褚君浩. 智能时代下的新型柔性压阻传感器[J]. 材料导报, 2020, 34(1): 1069-1079.
LUO Zewei,TIAN Xiyue,FAN Jichen,YANG Xin,FAN Tianyi,WANG Chaolun,WU Xing,CHU Junhao. Novel Flexible Resistive Sensors in the Age of Intelligence. Materials Reports, 2020, 34(1): 1069-1079.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19100149  或          http://www.mater-rep.com/CN/Y2020/V34/I1/1069
1 Chen S, Jiang K, Lou Z, et al. Advanced Materials Technologies, 2018, 3(2), 1700248.
2 Lou Z, Li, Wang L, et al. Small, 2017, 13(45), 1701791.
3 Wang X, Dong L, Zhang H, et al. Advanced Science, 2015, 2(10), 1500169.
4 Choi Y W, Kang D, Pikhitsa P V, et al. Scientific Reports, 2017, 7, 40116.
5 Shi X, Liu S, Sun Y, et al. Advanced Functional Materials, 2018, 28(22), 1800850.
6 Cui Z, Poblete F R, Zhu Y. ACS Applied Materials & Interfaces, 2019, 11(19), 17836.
7 Maksimov E G, Yaroshevich I A, Tsoraev G V, et al. Scientific Reports, 2019, 9(1), 8937.
8 Bhattacharjee M, Bandyopadhyay D. Sensors and Actuators A: Physical, 2019, 285, 241.
9 Dai H, Feng N, Li J, et al. Sensors and Actuators B: Chemical, 2019, 283, 786.
10 Lipomi D J, Vosgueritchian M, Tee B C, et al. Nature Nanotechnology, 2011, 6(12), 788.
11 Khan U, Kim T H, Ryu H, et al. Advanced Materials, 2017, 29(1), 1603544.
12 Bae G Y, Pak S W, Kim D, et al. Advanced Materials, 2016, 28(26), 5300.
13 Cheng Y, Wang R, Sun J, et al. Advanced Materials, 2015, 27(45), 7365.
14 Xie D, Jiang J, Hu W, et al. ACS Applied Materials & Interfaces, 2018, 10(31), 25943.
15 Tian H, Wang X F, Mohammad M A, et al. Nature Communications, 2018, 9(1), 4305.
16 Liu Y, Tao L Q, Wang D Y, et al. Applied Physics Letters, 2017, 110(12), 123508.
17 Lou Z, Chen S, Wang L, et al. Nano Energy, 2016, 23, 7.
18 Wang C, Li Y, Zhu Y, et al. Advanced Functional Materials, 2016, 26(42), 7668.
19 Jian M, Xia K, Wang Q, et al. Advanced Functional Materials, 2017, 27(9), 1606066.
20 Lee M S, Lee K, Kim S Y, et al. Nano Letters, 2013, 13(6), 2814.
21 Nie B, Li R, Cao J, et al. Advanced Materials, 2015, 27(39), 6055.
22 Hua Q, Sun J, Liu H, et al. Nature Communications, 2018, 9(1), 244.
23 Kim J, Lee M, Shim H J, et al. Nature Communications, 2014, 5, 5747.
24 Xu Z, Wu C, Li F, et al. Nano Energy, 2018, 49, 274.
25 Dai Y, Fu Y, Hui Z, et al. Advanced Functional Materials, 2018, 28, 1800275.
26 Kyaw A K K, Loh H H C, Fei Y, et al. Journal of Materials Chemistry C, 2017, 5(46), 12309.
27 Jang S, Jee E, Choi D, et al. ACS Applied Materials & Interfaces, 2018, 10(37), 31472.
28 Chen Z, Wang Z, Li X, et al. ACS Nano, 2017, 11(5), 4507.
29 Song S, Yue H, Meng G, et al. Construction & Building Materials, 2017, 131, 57.
30 Mitrakos V, Macintyre L, Denison F, et al. Micromachines, 2017, 8(2), 41.
31 Wan S, Bi H, Zhou Y, et al. Carbon, 2017, 114, 209.
32 Liu S, Wu X, Zhang D, et al. ACS Applied Materials & Interfaces, 2017, 9(28), 24148.
33 Tian H, Shu Y, Wang X F, et al. Scientific Reports, 2015, 5, 8603.
34 Wu X, Luo C, Hao P, et al. Advanced Materials, 2018, 30(2), 1703025.
35 Wang J, Tenjimbayashi M, Tokura Y, et al. ACS Applied Materials & Interfaces, 2018, 10(36), 30689.
36 https://curiosoando.com/diferencia-entre-tejido-granular-y-tejido-granulomatoso.
37 Engelis N G, Anastasaki A, Nurumbetov G, et al. Nature Chemistry, 2017, 9(2), 171.
38 https://site.ieee.org/sb-ulab/circuit-wallpapers-30650-306159/.
39 https://www.aliexpress.com/item/32916906710.html.
40 Chwee-Lin C, Mun-Bo S, Byoung-Sun L, et al. Advanced Materials, 2014, 26(21), 3451.
41 Yarjan Abdul S, Yuanqing L, Andreas S, et al. Small, 2015, 11(20), 2380.
42 Xu X, Wang R, Nie P, et al. ACS Applied Materials & Interfaces, 2017, 9(16), 14273.
43 Pham V P. 2d Materials, 2017, 4(2), 025049.
44 Nag S, Sachan A, Castro M, et al. Sensors & Actuators B Chemical, 2016, 222, 362.
45 Sohn K S, Timilsina S, Singh S P, et al. ACS Applied Materials & Interfaces, 2016, 8(50), 34777.
46 Phan H-P, Dowling K M, Nguyen T K, et al. Materials & Design, 2018, 156, 16.
47 Ko Y, Kim D, Kwon G, et al. Micromachines, 2018, 9(9), 438.
48 Dong X, Wei Y, Chen S, et al. Composites Science and Technology, 2018, 155, 108.
49 Scaffaro R, Maio A, Lo Re G, et al. Composites Science and Technology, 2018, 156, 166.
50 Wang T, Zhang Y, Liu Q, et al. Advanced Functional Materials, 2018, 28(7), 1705551.
51 Liu W, Liu N, Yue Y, et al. Small, 2018, 14(15), e1704149.
52 Zang X, Jiang Y, Wang X, et al. Sensors and Actuators B: Chemical, 2018, 273, 1195.
53 Wang C, Xia K, Zhang M, et al. ACS Applied Materials & Interfaces, 2017, 9(45), 39484.
54 Jeong H, Noh Y, Ko S H, et al. Composites Science and Technology, 2019, 174, 50.
55 Gong S, Schwalb W, Wang Y, et al. Nature Communications, 2014, 5, 3132.
56 Park S J, Kim J, Chu M, et al. Advanced Materials Technologies, 2018, 3, 1700158.
57 Wu X, Liu X, Wang J, et al. ACS Applied Materials & Interfaces, 2018, 10(45), 39009.
58 Tao L Q, Zhang K N, Tian H, et al. ACS Nano, 2017, 11(9), 8790.
59 Ma Y, Yue Y, Zhang H, et al. ACS Nano, 2018, 12(4), 3209.
60 Lee S, Reuveny A, Reeder J, et al. Nature Nanotechnology, 2016, 11(5), 472.
61 Schwartz G, Tee B C, Mei J, et al. Nature Communications, 2013, 4, 1859.
62 Pang C, Lee G Y, Kim T I, et al. Nature Materials, 2012, 11(9), 795.
63 Cheng W, Wang J, Ma Z, et al. IEEE Electron Device Letters, 39(2), 281.
64 Pang C, Lee C, Suh K Y. Journal of Applied Polymer Science, 2013, 130(3), 1429.
65 Li Q, Zhang J, Li Q, et al. Frontiers in Materials, 2019, 5(77), 1.
66 Vandersarl J J, Mercanzini A, Renaud P. Advanced Functional Materials, 2015, 25(1), 78.
67 Korzeniewska E, Szczesny A. Microelectronic Engineering, 2018, 193, 62.
68 Huang L, Huang Y, Liang J, et al. Nano Research, 2011, 4(7), 675.
69 Wang C T, Huang K Y, Lin D T W, et al. Sensors, 2010, 10(5), 5054.
70 Khan S, Tinku S, Lorenzelli L, et al. IEEE Sensors Journal, 2015, 15(6), 3146.
71 Nomura K, Kaji R, Iwata S, et al. Scientific Reports, 2016, 6, 19947.
72 Lee W, Koo H, Sun J, et al. Scientific Reports, 2015, 5, 17707.
73 Chuang C H, Liou Y R, Chen C W. Sensors & Actuators A Physical, 2012, 188(8), 48.
74 Ko S H. Semiconductor Science & Technology, 2016, 31(7), 073003.
75 Salaita K, Wang Y, Mirkin C A. Nature Nanotechnology, 2007, 2(3), 145.
76 You Y, Casey Y, Zijian Z. Advanced Materials, 2015, 26(31), 5508.
77 Yang T, Yu Y Z, Zhu L S, et al. Sensors & Actuators B Chemical, 2015, 208, 327.
78 Han S T, Peng H, Sun Q, et al. Advanced Materials, 2017, 29(33), 1700375.
79 Sapsford K E, Tyner K M, Dair B J, et al. Analytical Chemistry, 2011, 83(12), 4453.
80 Yue Y, Liu N, Liu W, et al. Nano Energy, 2018, 50, 79.
81 Ma Y, Liu N, Li L, et al. Nature Communications, 2017, 8(1), 1207.
82 Wang M, Gurunathan R, Imasato K, et al. Advanced Theory and Simulations, 2018, 2(2), 1800125.
83 Polly M H, Boonstra B B. Rubber Chemistry and Technology, 1957, 30(1), 170.
84 Hu N, Karube Y, Yan C, et al. Acta Materialia, 2008, 56(13), 2929.
85 Papakostas T V, Lima J, Lowe M. In: Proceedings of IEEE Sensors 2002. Piscataway, New Jersey, 2002, pp. 1620.
86 Timsit R S. IEEE Transactions on Components & Packaging Technologies, 1999, 22(1), 85.
87 Lowe M, King A, Lovett E, et al. Sensor Review, 2004, 24(1), 33.
88 Tacconi N R D, Rajeshwar K. Cheminform, 2003, 34(42), 3046.
89 Weatherup R S, Bayer B C, Blume R, et al. Nano Letters, 2011, 11(10), 4154.
90 Haque M A, Saif M T A, et al. Sensors & Actuators A, 2002, 97(1), 239.
91 Meyer M A, Herrmann M, Langer E, et al. Microelectronic Engineering, 2002, 64(1), 375.
92 Seward G G E, Celotto S, Prior D J, et al. Acta Materialia, 2004, 52(4), 821.
93 Liu F, Zhao H, Yang R, et al. Materials Today Communications, 2019, 19, 114.
94 Chen B, Yang R, Dong J, et al. Measurement, 2019, 139, 421.
95 Carpena-Nunez J, Yang D, Kim J W, et al. Nanotechnology, 2013, 24(3), 035701.
96 Luo C, Wang C, Wu X, et al. Small, 2017, 13(35), 1604259.
97 Luo C, Yu K, Wu X, et al. Physica Status Solidi (b), 2019, 256(3), 1800442.
98 Gao W, Emaminejad S, Nyein H Y Y, et al. Nature, 2016, 529(7587), 509.
99 Armas Pérez L, Medina Verde N, Peralta Pérez M, et al. Journal of Materials Science, 1991, 26(21), 5899.
100 Hussain M, Choa Y H, Niihara K. Composites Part A Applied Science & Manufacturing, 2001, 32(12), 1689.
101 Polley M H, Boonstra B B S T. Rubber Chemistry and Technology, 1957, 30, 170.
102 Medalia A I. Rubber Chemistry and Technology, 1986, 59(3), 432.
103 Voet A. Rubber Chemistry and Technology, 1981, 54(1), 42.
104 Amjadi M, Pichitpajongkit A, Lee S, et al. ACS Nano, 2014,8(5), 5154.
105 Prete Z D, Monteleone L, Steindler R. Review of Scientific Instruments, 2001, 72(2), 1548.
106 Kim D U, Yoo B. Sensors & Actuators B Chemical, 2011, 160(1), 1168.
107 Matsuda Y, Deng W Q, Goddard, et al. The Journal of Physical Chemistry C, 2010, 114(41), 17845.
108 Paulson S, Helser A, Nardelli M B, et al. Science, 2000, 290(5497), 1742.
109 Mcalpine M C, Habib A, Dunwei W, et al. Nature Materials, 2007, 6(5), 379.
110 https://stock.adobe.com/sk/images/black-and-yellow-pcb-texture/
70672234/.
111 https://www.wired.com/2014/08/algorithmia/.
112 https://en.wikipedia.org/wiki/Artificial_neural_network.
113 https://bodytomy.com/understanding-types-of-cartilage-in-human-body.
114 https://www.mouser.com/blog/the-rise-of-soft-robotics.
115 https://www.easyicon.net/.
116 Gong S, Lai D T H, Su B, et al. Advanced Electronic Materials, 2015, 1(4), 1400063.
117 Pang Y, Zhang K, Yang Z, et al. ACS Nano, 2018, 12(3), 2346.
118 Wei Y, Chen S, Dong X, et al. Carbon, 2017, 113, 395.
119 Tien N T, Jeon S, Kim D I, et al. Advanced Materials, 2014, 26(5), 796.
120 Lee S, Kim J, Yun I, et al. Nature Communications, 2019, 10(1), 2468.
121 Sundaram S, Kellnhofer P, Li Y, et al. Nature, 2019, 569(7758), 698.
122 Zhang Y, Ye J, Lin Z, et al. Sensors, 2018, 19(1), 27.
123 Sundaralingam B, Lambert A, Handa A, et al. In: 2019 International Conference on Robotics and Automation. Canada, 2019, pp. 9035.
124 Yuan W, Zhu C, Owens A, et al. In: 2017 IEEE International Confe-rence on Robotics and Automation. Singapore, 2017, pp. 951.
125 Chen Y, Xue Y. In: 2015 IEEE International Conference on Systems, Man, and Cybernetics. Hong Kong, 2015, pp. 1488.
126 Dehzangi O, Taherisadr M, Changalvala R. Sensors, 2017, 17(12), 2735.
127 Liu G Y, Kong D Y, Hu S G, et al. Applied Physics Letters, 2018, 113(8), 084102.
128 Thuruthel T G, Shih B, Lasch C, et al. Science Robotics, 2019, 4(26), eeav1488.
129 Larson C, Spjut J, Knepper R, et al. Soft Robot, 2019, 6(5), 611.
130 Amjadi M, Kyung K U, Park I, et al. Advanced Functional Materials, 2016, 26(11), 1678.
131 Luo Z, Hu X, Tian X, et al. Sensors, 2019, 19(5), 1250.
132 Boutry C M, Negre M, Jorda M, et al. Science Robotics, 2018, 3(24), eaau6914.
133 Koyama K, Murakami K, Senoo T, et al. IEEE Robotics and Automation Letters, 2019, 4(2), 578.
No related articles found!
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed