Please wait a minute...
材料导报  2020, Vol. 34 Issue (1): 1050-1058    https://doi.org/10.11896/cldb.19050230
  |
柔性基底上金属薄膜的失效行为及界面能测试方法研究进展
薛秀丽1,2,王世斌3,曾超峰1,2,,李林安3,王志勇3
1 湖南科技大学岩土工程稳定控制与健康监测湖南省重点实验室,湘潭 411201
2 湖南科技大学土木工程学院,湘潭 411201
3 天津大学机械工程学院,天津300072
Failure Behavior and Test Method of Interface Energy of Thin Metal Films on Flexible Substrates: a Review
XUE Xiuli1,2,WANG Shibin3,ZENG Chaofeng1,2,,LI Lin'an3,WANG Zhiyong3
1 Hunan Provincial Key Laboratory of Geotechnical Engineering for Stability Control and Health Monitoring,Hunan University of Science & Technology,Xiangtan 411201,China
2 School of Civil Engineering,Hunan University of Science & Technology,Xiangtan 411201,China
3 School of Mechanical Engineering,Tianjin University,Tianjin 300072,China
下载:  全 文 ( PDF ) ( 5928KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 沉积在柔性聚合物基底的金属薄膜复合结构同时具有聚合物和金属的优势,包括聚合物的灵活性和轻质性,以及金属的优良导电率和电磁波屏蔽等特点。柔性基底-金属薄膜系统以其高延展性、高柔性、高制作效率、良好的电学特性和生物相容性等优点而受到青睐,在微机电系统、航空航天、生物材料、柔性电子等领域有广阔的应用前景。在所有应用中,柔性基底-金属薄膜系统的性能、可靠性和耐久性都直接与薄膜和基底之间良好的界面粘附能密切相关,良好的界面粘接性能往往能提高薄膜抑制失效的能力。膜-基结构的力学性能和界面结合性能对相关器件的使用性能和服役寿命起着至关重要的作用。
然而,在实际应用中,薄膜-基底复合结构承受着复杂的载荷,如拉伸、扭转、弯曲等,虽然柔性基底可以承受较大的变形,但金属薄膜则不能,这可能导致膜-基结构发生各种形式的破坏。其中三种主要的失效形式包括界面脱层、薄膜屈曲和薄膜断裂。一方面,这些破坏将严重影响薄膜的电、磁、光等物理性能,而膜-基间的界面粘附性能对薄膜失效的发生和发展起着关键作用。另一方面,针对不同的失效模式,可以充分利用其测试薄膜的力学性能和界面粘附能。近几年来,柔性基底上的单层膜、双层膜和纳米多层膜系统的失效行为和界面粘附能测试等问题引起了学者们的广泛关注。
对于柔性基底上的单层薄膜体系,学者们已经针对薄膜和界面的各种失效行为和断裂机理进行了深入研究;对于多层金属薄膜体系,不同性质金属层的组合可以提高体系的附着力、耐腐蚀性或热稳定性。多层膜的尺寸效应影响机制、不同材料层间组合以及界面力学响应问题是近几年学者关注的热点。以往,对膜-基界面粘附能的研究主要针对硬基底,近几年来,学者们针对柔性基底-金属薄膜系统的界面粘附能的测试提出了新的有效方法。
本文综述了柔性基底上微纳米金属薄膜的失效行为和界面破坏问题的最新研究进展,重点介绍了薄膜及界面的破坏模式、尺寸效应、多层薄膜的破坏失效等问题;特别讨论了如何利用薄膜的屈曲破坏来测量薄膜性能以及确定界面粘附能;最后,针对这一领域的研究面临的问题和前景进行展望,以期为制备新型柔性膜-基系统的材料选择和结构设计提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
薛秀丽
王世斌
曾超峰
李林安
王志勇
关键词:  柔性基底  金属薄膜  膜-基界面  失效  屈曲  断裂  界面粘附能  沉积    
Abstract: The composite structure of thin metal films deposited on flexible polymer substrates has advantages of both polymers and metals, including flexibility and lightness of polymers, as well as excellent conductivity and electromagnetic shielding of metals. Flexible substrates-metal film systems are favored for their high ductility, high flexibility, high production efficiency, good electrical properties, biocompatibility, and other advantages. In all applications, the performance, reliability and durability are directly related to the good interfacial adhesion between the film and the substrate. The mechanical properties and interface bonding properties of film-substrate structures play an important role in the service life of rela-ted devices.
However, in practical applications, thin film-substrate composite structures suffer from complex loads, such as stretching, torsion, bending, etc. Although flexible substrates can bear large deformation, metal films cannot, which may lead various forms of damage to the film-substrate structures, including three main failure modes: interfacial delamination, film buckling and film fracture. On the one hand, these damages will se-riously affect the electrical, magnetic, optical and other physical properties of the film, and the interface adhesion between the film and substrate plays a key role in the occurrence and development of the film failure. On the other hand, for different failure modes, it can be fully used to test the mechanical properties and interface adhesion energy of thin films. In recent years, the failure behavior and interfacial adhesion test of monolayer, bilayer and multilayer membrane systems on flexible substrates have attracted wide attention.
Forsingle-layer film systems on flexible substrates, the failure behaviors and fracture mechanisms of films and interfaces have been studied deeply. For multilayer metal film systems, the combination of metal layers with different properties can improve adhesion, corrosion resistance or thermal stability. The influence mechanism of size effect of multilayer, the interlayer combination of different materials and the mechanical response of interface have become the focus of scholars in recent years. In the past, as to the interface adhesion energy between thin films and substrates, researches mainly focused on rigid substrates. While in recent years, scholars have proposed new and effective methods to determine the interface adhesion energy of flexible substrates-metal film systems.
This paper reviews the latest research progress on the failure behavior and interface failure of micro-nano metal films on flexible substrates. In particular, how to use the buckling failure of thin films to measure the properties of thin films and determine the interface adhesion energy is discussed. Finally, the problems and prospects of the research in this field are prospected, so as to provide references for material selection and structural design of new flexible film-substrate systems.
Key words:  flexible substrate    metal films    film-substrate interface    failure    buckling    cracking    interfacial adhesion energy    deposition
                    发布日期:  2020-01-15
ZTFLH:  O647.4  
基金资助: 国家自然科学基金(11602083);湖南省自然科学基金(2016JJ6044)
通讯作者:  cfzeng@hnust.edu.cn   
作者简介:  薛秀丽,湖南科技大学,副教授,硕士研究生导师。2014年6月于天津大学固体力学专业取得博士学位,导师为王世斌教授。主要从事薄膜和智能材料的力学性能及表征研究。近年来,在Surface & Coatings Technology、Surface and Interface Analysis、Journal of Hydrology等国内外重要期刊发表文章20多篇。
曾超峰,博士(后),湖南科技大学“奋进学者”特聘副教授,英国南安普顿大学客座研究员,主要从事软土力学与智能材料特性等方面的研究工作。2018年获“Elsevier出版集团Computers and Geotechnics期刊杰出审稿人奖”。目前主持国家自然科学基金、中国博士后科学基金特别资助项目等10余项课题。近年来,在Surface & Coatings Technology、Surface and Interface Analysis、Journal of Hydrology等国内外高水平刊物发表论文50余篇。
引用本文:    
薛秀丽,王世斌,曾超峰,李林安,王志勇. 柔性基底上金属薄膜的失效行为及界面能测试方法研究进展[J]. 材料导报, 2020, 34(1): 1050-1058.
XUE Xiuli,WANG Shibin,ZENG Chaofeng,LI Lin'an,WANG Zhiyong. Failure Behavior and Test Method of Interface Energy of Thin Metal Films on Flexible Substrates: a Review. Materials Reports, 2020, 34(1): 1050-1058.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19050230  或          http://www.mater-rep.com/CN/Y2020/V34/I1/1050
1 Nathan A, Ahnood A, Cole M T, et al. Proceedings of the IEEE, 2012, 100(Special Centennial Issue), 1486.
2 Guo R, Yu Y, Xie Z, et al.Advanced Materials, 2013, 25(24), 3343.
3 Yao S, Zhu Y.Advanced Materials, 2015, 27(9), 1480.
4 Rim Y S, Bae S H, Chen H, et al.Advanced Materials, 2016, 28(22), 4415.
5 Naghdi S, Rhee K Y, Hui D, et al.Coatings, 2018, 8(8), 278.
6 Linnet J, Walther A R, Wolff C, et al.Optical Materials Express, 2018, 8(7), 1733.
7 Hutchinson J W, Suo Z.Advances in Applied Mechanics, 1992, 29, 63.
8 Freund L B, Suresh S.Thin film materials—Stress, defect formation and surface evolution. Cambridge University Press, 2004.
9 Xiang Y, Li T, Suo Z, et al.Applied Physics Letters, 2005, 87(16), 161910.
10 Lu N, Wang X, Suo Z, et al.Applied Physics Letters, 2007, 91(22), 221909.
11 Chen J, Bull S J.Journal of Physics D, Applied Physics, 2011, 44(3), 034001.
12 Xue X, Wang S, Zeng C, et al.Surface and Interface Analysis, 2018, 50(2), 180.
13 Zhou H, Ma L, Yu S J, et al.Thin Solid Films, 2018, 651, 131.
14 Yu S J, Chen M G, Si P Z, et al.Thin Solid Films, 2014, 550, 480.
15 Jia H, Wang S, Goudeau P, et al.Journal of Micromechanics and Microengineering, 2013, 23(4), 045014.
16 Ruffini A, Durinck J, Colin J, et al.Acta Materialia, 2013, 61(12), 4429.
17 Colin J, Coupeau C, Durinck J, et al.EPL (Europhysics Letters), 2009, 86(5), 54002.
18 Boijoux R, Parry G, Coupeau C.Thin Solid Films, 2018, 645(Supplement C), 379.
19 Coupeau C, Boijoux R, Ni Y, et al.Journal of the Mechanics and Physics of Solids, 2019, 124, 526.
20 Zhang Q, Yin J.Journal of the Mechanics and Physics of Solids, 2018, 118, 40.
21 Toth F, Rammerstorfer F G, Cordill M J, et al.Acta Materialia, 2013, 61(7), 2425.
22 Yin J, Chen X.Journal of Physics D, Applied Physics, 2011, 44(4), 045401.
23 Parry G, Coupeau C, Colin J, et al.Acta Materialia, 2004, 52(13), 3959.
24 Wu K, Xia Y, Yuan H Z, et al.Materials Science and Engineering, A, 2019, 744, 746.
25 Wu K, Wang Y Q, Yuan H Z, et al.Materials Letters, 2019, 237, 118.
26 Faou J Y, Parry G, Grachev S, et al.Physical Review Letters, 2012, 108(11), 116102.
27 Ren H, Xiong Z, Wang E, et al.ACS Nano, 2019, 13(3), 3106.
28 Li B, Cao Y P, Feng X Q, et al.Soft Matter, 2012, 8(21), 5728.
29 Chen X, Hutchinson J W.Journal of Applied Mechanics, 2004, 71(5), 597.
30 Yu S J, Du Y P, Sun Y D, et al.Thin Solid Films, 2017, 638(Supplement C), 230.
31 Sarkar B, Satapathy D K, Jaiswal M.Soft Matter, 2017, 13(32), 5437.
32 Zhang C, Li B, Tang J Y, et al.Soft Matter, 2017, 13(40), 7389.
33 Pocivavsek L, Dellsy R, Kern A, et al.Science, 2008, 320(5878), 912.
34 Huang J, Juszkiewicz M, de Jeu W H, et al.Science, 2007, 317(5838), 650.
35 Pan K, Ni Y, He L, et al.International Journal of Solids and Structures, 2014, 51(21-22), 3715.
36 Jin L, Takei A, Hutchinson J W.Journal of the Mechanics and Physics of Solids, 2015, 81, 22.
37 Rogers J A, Someya T, Huang Y.Science, 2010, 327(5973), 1603.
38 Ouchi T, Yang J, Suo Z, et al.ACS Applied Materials & Interfaces, 2018, 10(27), 23406.
39 da Costa M V T, Bolinsson J, Neagu R C, et al.Surface and Coatings Technology, 2019, 370, 374.
40 Xia A, Glushko O, Cordill M J, et al.Journal of Vacuum Science & Technology A, 2019, 37(1), 010601.
41 Li T, Huang Z Y, Xi Z C, et al.Mechanics of Materials, 2005, 37(2-3), 261.
42 Andersons J, Leterrier Y, Tornare G, et al.Mechanics of Materials, 2007, 39(9), 834.
43 Handge U A.Journal of Materials Science, 2002, 37(22), 4775.
44 Wu K, Wang Y Q, Yuan H Z, et al.Journal of Alloys and Compounds, 2019, 783, 841.
45 Merabtine S, Zighem F, Faurie D, et al.Nano Letters, 2018, 18(5), 3199.
46 Marthelot J, Roman B, Bico J, et al.Physical Review Letters, 2014, 113(8), 085502.
47 Faurie D, Zighem F, Godard P, et al.Acta Materialia, 2019, 165, 177.
48 Cordill M J, Fischer F D, Rammerstorfer F G, et al.Acta Materialia, 2010, 58(16), 5520.
49 Dan W, Huimin X, Yajun Y, et al.Journal of Micromechanics and Microengineering, 2013, 23(3), 035040.
50 Xue X, Wang S, Zeng C, et al.Surface and Coatings Technology, 2014, 244, 151.
51 Gao T X, Sun Y D, Feng Y F, et al.Philosophical Magazine, 2016, 96(28), 2943.
52 Yang L, Chen H S, Jiang H, et al.Chemical Communications, 2018, 54(32), 3997.
53 Yu S, Liu X, Sun Y, et al.Thin Solid Films, 2019, 669, 355.
54 Li S C, Yu S J, He L, et al.Journal of the Mechanics and Physics of Solids, 2018, 112, 637.
55 Choleridis A, Sao-Joao S, Ben-Mohamed J, et al.Surface and Coatings Technology, 2018, 352, 549.
56 Chen X, Pang X, Meng J, et al.Ceramics International, 2018, 44(6), 5874.
57 Yu S J, Li S C, Ni Y, et al.Acta Materialia, 2017, 127(Supplement C), 220.
58 Thouless M D.Journal of the American Ceramic Society, 1993, 76(11), 2936.
59 Cotterell B, Chen Z.International Journal of Fracture, 2000, 104(2), 169.
60 Colin J, Coupeau C, Durinck J, et al.Physical Review B, 2008, 78(15),
61 Yu S J, Xiao X F, Chen M G, et al.Acta Materialia, 2014, 64, 41.
62 Li S C, Yu S J, He L, et al.Journal of the Mechanics and Physics of Solids, 2018, 112, 637.
63 Faulhaber S, Mercer C, Moon M, et al.Journal of the Mechanics and Physics of Solids, 2006, 54(5), 1004.
64 Guo T, Pang X, He J, et al.Scripta Materialia, 2019, 163, 82.
65 Guo T, Chen Y, Cao R, et al.Acta Materialia, 2018, 152, 77.
66 Putz B, Schoeppner R L, Glushko O, et al.Scripta Materialia, 2015, 102, 23.
67 Marx V M, Toth F, Wiesinger A, et al.Acta Materialia, 2015, 89, 278.
68 Miyamura T, Koike J.Materials Science and Engineering, A, 2007, 445-446, 620.
69 Putz B, May-Miller C, Matl V, et al.Scripta Materialia, 2018, 145, 5.
70 Kreiml P, Rausch M, Terziyska V L, et al.Thin Solid Films, 2018, 665, 131.
71 Kreiml P, Rausch M, Terziyska V L, et al.Scripta Materialia, 2019, 162, 367.
72 Choa S H, Ko B H, Lee H S.Engineering Fracture Mechanics, 2018, 200, 283.
73 Aydiner C C, Brown D W, Mara N A, et al.Applied Physics Letters, 2009, 94(3), 031906.
74 Wu K, Zhang J Y, Li J, et al.Acta Materialia, 2015, 100, 344.
75 Wu K, Zhang J Y, Liu G, et al.Acta Materialia, 2013, 61(20), 7889.
76 Mohammed D W, Ameen R B, Sierros K A, et al.Thin Solid Films, 2018, 645, 241.
77 Wu K, Yuan H Z, Liang X Q, et al.Scripta Materialia, 2018, 146, 1.
78 Marx V M, Toth F, Wiesinger A, et al.Acta Mater, 2015, 89, 278.
79 Polyakov M N, Lohmiller J, Gruber P A, et al.Advanced Engineering Materials, 2015, 17(6), 810.
80 Cordill M J, Kleinbichler A, Völker B, et al.Materials Science and Engineering, A, 2018, 735, 456.
81 Fu K, Sheppard L, Chang L, et al.Tribology International, 2018, 126, 344.
82 Kleinbichler A, Zechner J, Cordill M J.Microelectronic Engineering, 2017, 167, 63.
83 Jörg T, Cordill M J, Franz R, et al.Thin Solid Films, 2016, 606, 45.
84 He W, Han M, Goudeau P, et al.Applied Surface Science, 2018, 434, 771.
85 He W, Han M, Wang S, et al.Acta Mechanica Sinica, 2018, 34(2), 381.
86 Cordill M J, Glushko O, Kleinbichler A, et al.Thin Solid Films, 2017, 644, 166.
87 Kleinbichler A, Pfeifenberger M J, Zechner J, et al.Materials & Design, 2018, 155, 203.
88 Vega-Morón R C, Rodríguez Castro G A, Melo-Máximo D V, et al.Surface and Coatings Technology, 2018, 349, 1137.
89 Gerberich W W, Cordill M J.Reports on Progress in Physics, 2006, 69(7), 2157.
90 Wu K, Wang Y Q, Yuan H Z, et al.Philosophical Magazine Letters, 2018, 98(10), 464.
91 Kim M, Kim D J, Ha D, et al.Nanoscale, 2016, 8(18), 9461.
92 Lacour S P, Chan D, Wagner S, et al.Applied Physics Letters, 2006, 88(20), 204103.
93 Moon M W, Chung S, Lee K R, et al.International Journal of Materials Research, 2007, 98(12), 1203.
94 Wang C, Kang J, Xue Z, et al.Composite Structures, 2017, 161(Supplement C), 8.
95 Cantarella G, Vogt C, Hopf R, et al.ACS Applied Materials & Interfaces, 2017, 9(34), 28750.
96 Park S J, Ko T J, Yoon J, et al.Applied Surface Science, 2018, 427, 1.
97 Etiemble A, Lopes C, Nkou Bouala G I, et al.Surface and Coatings Technology, 2019, 358, 646.
98 Cordill M J, Jörg T, Glushko O, et al.Materials Letters, 2019, 244, 47.
99 Dickey M D.Advanced Materials, 2017, 29(27), 1606425.
100 Li X, Li M, Zong L, et al.Advanced Functional Materials, 2018, 28(39), 1804197.
[1] 王向杰, 冯蕾, 武靖亭, 肖新华, 苏蓓蓓. 搅拌摩擦焊接ZK60镁合金弯曲性能与断裂行为研究[J]. 材料导报, 2020, 34(4): 4083-4086.
[2] 郭俊江,朱香平,许彦涛,曹伟伟,邹永星,陆敏,彭波,司金海,郭海涛. 原子层沉积微通道板的研究进展[J]. 材料导报, 2020, 34(3): 3080-3089.
[3] 贾卫平, 吴蒙华, 贾振元, 董桂馥, 李晓鹏, 周绍安. 超声功率对多场耦合作用下脉冲电沉积Ni-ZrO2纳米复合镀层性能的影响[J]. 材料导报, 2020, 34(2): 2017-2022.
[4] 张绪, 冯瑞, 张晔, 郭卫, 刘富. 民机复合材料帽型长桁压缩承载力分析与试验[J]. 材料导报, 2019, 33(Z2): 215-221.
[5] 张李锋, 段江. 750 kV变电站地刀连杆杆端轴承断裂失效分析[J]. 材料导报, 2019, 33(Z2): 452-454.
[6] 张谦. 不同铺层角含孔复合材料板拉伸性能数值模拟[J]. 材料导报, 2019, 33(z1): 145-148.
[7] 苏文静, 金良茂, 金克武, 王天齐, 汤永康, 甘治平. 化学气相沉积法较低温度下制备层状硫化钼薄膜的研究[J]. 材料导报, 2019, 33(z1): 158-160.
[8] 薛秀丽, 曾超峰, 王世斌, 李林安, 王志勇. 溶剂对PMMA基底上金属薄膜形貌的影响[J]. 材料导报, 2019, 33(z1): 412-415.
[9] 郭策安, 赵宗科, 赵爽, 卢凤生, 赵博远, 张健. 电火花沉积AlCoCrFeNi高熵合金涂层的高速摩擦磨损性能[J]. 材料导报, 2019, 33(9): 1462-1465.
[10] 李雪换, 底月兰, 王海斗, 李国禄, 董丽虹, 马懿泽. 基于内聚力模型的热障涂层失效行为研究[J]. 材料导报, 2019, 33(9): 1500-1504.
[11] 杨万利, 代丽娜, 樊振宁, 张瀚晨, 史忠旗. PAS烧结SiC/h-BN复相陶瓷的韧性表征[J]. 材料导报, 2019, 33(8): 1272-1275.
[12] 卢百平, 崔春娟, 田露露, 问亚岗, 王佩. 布里奇曼定向凝固Ni-12%Si过共晶的弹性模量与断裂韧性[J]. 材料导报, 2019, 33(8): 1383-1388.
[13] 王一雍, 周新宇, 金辉, 梁智鹏. 超声辅助电沉积Ni-Co/Y2O3复合镀层的电化学研究[J]. 材料导报, 2019, 33(6): 1011-1016.
[14] 包鑫, 柏胜强, 吴子华, 吴汀, 顾明, 谢华清. CoSb3基方钴矿热电材料保护涂层研究进展[J]. 材料导报, 2019, 33(5): 784-790.
[15] 崔龙辰, 王军军, 黄伟九. 类聚合物碳薄膜的制备及其摩擦学研究进展[J]. 材料导报, 2019, 33(5): 797-804.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed