Please wait a minute...
材料导报  2019, Vol. 33 Issue (5): 784-790    https://doi.org/10.11896/cldb.201905009
  无机非金属及其复合材料 |
CoSb3基方钴矿热电材料保护涂层研究进展
包鑫1,2, 柏胜强2, 吴子华1, 吴汀2, 顾明2, 谢华清1
1 上海第二工业大学环境与材料工程学院,上海 201209;
2 中国科学院上海硅酸盐研究所高性能陶瓷和超微结构国家重点实验室,上海 200050
A Survey on the Protective Coating Techniques for CoSb3-based SkutteruditeThermoelectric Materials
BAO Xin1,2, BAI Shengqiang2, WU Zihua1, WU Ting2, GU Ming2, XIE Huaqing1
1 School of Environmental and Materials Engineering, Shanghai Polytechnic University, Shanghai 201209;
2 The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050
下载:  全 文 ( PDF ) ( 3086KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 热电转换技术可以利用固体中载流子输运实现热能与电能之间的相互转换,该技术具备无污染、无传动 、无噪声等一系列优势。在太阳能光热复合发电、工业生产余废热回收利用等方面都极具潜力,为缓解环境及能源压力提供了新的研究方向。热电转换技术的性能通过无量纲优值ZT来衡量,ZT=S2σT/κ, 其中S是塞贝克系数,σ是电导率,T是绝对温度,κ是热导率。但目前热电器件转换与普通热机发电效率存在较大的差距,相对较低的转换效率是由于材料热电转换性能较低,即ZT优值较低导致。理论研究表明,热电材料ZT优值达到1以上就具备了商业应用价值。
作为典型电子晶体-声子玻璃热电材料之一,锑化钴(CoSb3)基方钴矿热电材料具有优异的热电性能,在过去20多年被广泛研究。填充、掺杂、纳米复合等方式能有效提升CoSb3基热电材料的性能,其ZT值从CoSb3二元方钴矿的0.5左右提升到了填充方钴矿的1.7~2.0。CoSb3基方钴矿成为了最具潜力的中温区(500~850 K)的发电热电材料之一,CoSb3基方钴矿热电器件的设计、集成、服役行为也随之展开。相关研究显示,CoSb3基方钴矿热电转换器件在高温服役过程中,材料的劣化(如材料的氧化,元素的升华以及服役期间界面扩散等)会导致整个器件性能的降低,严重阻碍了方钴矿材料的商业化应用。打破限制CoSb3基方钴矿器件实际应用的技术壁垒,扩大其应用领域,解决CoSb3基方钴矿材料本身高温劣化性问题是当前方钴矿器件研究的热点之一。
本文综述了CoSb3基方钴矿热电材料的氧化、Sb元素升华等导致材料及器件失效的主要形式和各种CoSb3基方钴矿热电材料保护涂层的最新研究进展,如金属类涂层Ti、Mo、Pt等,非金属类涂层玻璃、陶瓷、气凝胶等,以及复合涂层对方钴矿基材料的保护性能,以期为CoSb3基方钴矿热电器件材料劣化性问题的解决提供参考。在热电器件实际服役中,各种热电材料都存在元素升华的现象,并且这些材料在氧分压过高的环境中工作同样面临着氧化问题,该综述对其他热电材料的保护、延长热电器件的使用寿命方面也具有一定的参考价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
包鑫
柏胜强
吴子华
吴汀
顾明
谢华清
关键词:  热电材料  方钴矿  高温防护涂层  锑化钴(CoSb3)  失效  复合涂层    
Abstract: Thermoelectric conversion technology can take the advantage of the carrier transport in solids to realize the conversion between thermal energy and electrical energy. Owing to its superiority of no pollution, no transmission, and no noise, thermoelectric conversion technology shows great potential in solar and thermal combined power generation and industrial waste heat recovery technologies, which provides a new research direction for alleviating environmental and energy pressure. The performance of thermoelectric conversion technology is characterized by the dimensionless figure of merit ZT, ZT=S2σT/κ, where S, σ, T and κ represent the Seebeck coefficient, conductivity, absolute temperature, thermal conductivity, respectively. However, there is a big gap between the current thermoelectric device conversion efficiency and the general heat engine power generation efficiency. The relatively low conversion efficiency results from the lower thermoelectric conversion performance of the material, namely the lower ZT value. Theoretical researches illustrate that only ZT value exceeds 1 can thermoelectric material be applied commercially.
As one of the typical electronic crystal-phonon glass thermoelectric materials, the CoSb3-based skutterudite thermoelectric material exhibits excellent thermoelectric properties and has been extensively studied in the past two decades. Filling, doping, preparing nanocomposites and other methods have effectively improved the properties of CoSb3-based thermoelectric materials, and its ZT has increased from about 0.5 for CoSb3 binary skutterudite to about 1.7—2.0 for filled skutterudite. Therefore, CoSb3-based skutterudite(SKD) is considered as one of the most promising thermoelectric(TE) material in medium temperature region (500—850 K). And the design, integration and service behavior of SKD based thermoelectric devices are carried out. Unfortunately, relative studies have shown that the degradation of materials (such as oxidation of materials, sublimation of elements and diffusion of interface during service) of SKD based thermoelectric converters during the high temperature service will lead to the overall performance degradation of the device, which seriously hinders the commercial application of skutterudite materials. Consequently, research focuses of SKD based thermoelectric devices lie in breaking the technical barriers that restrict the practical application of the devices, expanding its application field and solving the problem of high temperature degradation of SKD.
In this article, an overview of the main failure mode of materials ans devices caused by oxidation of SKD and sublimation of Sb element, various protective coating techniques of the SKD ( such as metal coating of Ti,Mo,Pt, etc., nonmetallic coating of glass, ceramics, aerogel and compo-site coating) is presented, which aims to provide a reference for solving the problem of deterioration of CoSb3based skutterudite thermoelectric devices. In the actual service of thermoelectric devices, elemental sublimation phenomenon is inevitable in various thermoelectric materials, and these materials also encounter oxidation problems when operating in high partial pressure of oxygen environments. This review also presents a certain reference value in protecting other thermoelectric materials from deteriorating and prolonging the service time of the thermoelectric devices.
Key words:  thermoelectric    skutterudite    high-temperature protective coating    cobalt antimonide (CoSb3)    failure    composite coating
               出版日期:  2019-03-10      发布日期:  2019-03-12
ZTFLH:  TQ16  
基金资助: 国家自然科学基金(51676117;51406111);上海市青年东方学者(QD2015052);上海第二工业大学研究生项目基金(EGD17YJ0036)
作者简介:  包鑫,2016年6月毕业于西南石油大学,获得工学学士学位。现为上海第二工业大学环境与材料工程学院硕士研究生,在谢华清教授的指导下进行研究。目前主要的研究领域为热电材料。柏胜强,中国科学院上海硅酸盐研究所,正高级工程师,硕士生导师。2001年6月本科毕业于浙江大学材料系,获学士学位,2010年7月在中国科学院上海硅酸盐研究所获博士学位。谢华清,现任上海第二工业大学教授。1994年本科毕业于中国科技大学工程热物理专业(五年制),2002年博士毕业于中科院上海硅酸盐研究所材料科学与工程专业。曾先后在美国肯塔基大学机械工程系、韩国国立首尔大学先进制造和设计研究所、日本九州大学先导物质化学研究所学习工作。目前主要研究兴趣在于节能与新能源材料和微尺度传热的实验与理论研究工作。hqxie@sspu.edu.cn
引用本文:    
包鑫, 柏胜强, 吴子华, 吴汀, 顾明, 谢华清. CoSb3基方钴矿热电材料保护涂层研究进展[J]. 材料导报, 2019, 33(5): 784-790.
BAO Xin, BAI Shengqiang, WU Zihua, WU Ting, GU Ming, XIE Huaqing. A Survey on the Protective Coating Techniques for CoSb3-based SkutteruditeThermoelectric Materials. Materials Reports, 2019, 33(5): 784-790.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201905009  或          http://www.mater-rep.com/CN/Y2019/V33/I5/784
1 Vedula R T, Song R, Stuecken T, et al. International Journal of Engine Research,2017,18(10),1055.
2 Disalvo F J. Science,1999,285(5428),703.
3 Bell L E. Science,2008,321(5895),1457.
4 Hochbaum A I, Chen R, Delgado R D, et al. Nature,2008,451(7175),163.
5 Poudel B, Hao Q, Ma Y, et al. Science,2008,320(5876),634.
6 Shutoh N, Sakurada S. Journal of Alloys & Compounds,2005,389(1),204.
7 Sakurada S, Shutoh N. Applied Physics Letters,2005,86(8),3159.
8 Muta H, Kanemitsu T, Kurosaki K, et al. Materials Transactions,2006,47(6),1453.
9 Liu H, Shi X, Xu F, et al. Nature Materials,2012,11(5),422.
10 He Y, Day T, Zhang T, et al. Advanced Materials,2014,26(23),3974.
11 Rowe D M. Thermoelectrics Handbook Macro to Nano, CRC Press, UK,2005.
12 Shi X, Yang J, Salvador J R, et al. Journal of the American Chemical Society,2011,133(20),7837.
13 Rogl G, Grytsiv A, Rogl P. Acta Materialia,2014,63(63),30.
14 Nolas G S, Morelli D T, Tritt T M. Annual Review of Materials Research,1982,29(1),89.
15 Dong H L. Fabrication and properties of protective coatings for skutterudite thermoelectric materials and devices. Ph.D. Thesis, University of Chinese Academy of Sciences, China,2013(in Chinese).
董洪亮.方钴矿热电材料与器件用封装保护涂层的制备及性能研究.博士学位论文,中国科学院大学,2013.
16 Uher C. Chapter 5 Skutterudites: Prospective novel thermoelectrics, Se-miconductors and Semimetals.2001,pp.139.
17 Zhang J, Xu B, Yu F, et al. Journal of Alloys & Compounds,2010,503(2),490.
18 Zhang L, Melnychenko-Koblyuk N, Royanian E, et al. Journal of Alloys & Compounds,2010,504(1),53.
19 Xiong Z, Chen X, Huang X, et al. Acta Materialia,2010,58(11),3995.
20 Zhao D, Tian C, Liu Y, et al. Journal of Alloys & Compounds,2011,509(6),3166.
21 Leszczynski J, Wojciechowski K T, Malecki A L. Journal of Thermal Analysis & Calorimetry,2011,105(1),211.
22 Xia X, Qiu P, Shi X, et al. Journal of Electronic Materials,2012,41(8),2225.
23 Wei P, Zhao W Y, Dong C L, et al. Acta Materialia,2011,59(8),3244.
24 Godlewska E, Zawadzka K, Adamczyk A, et al. Oxidation of Metals,2010,74(3-4),113.
25 Zhao D, Tian C, Tang S, et al. Materials Science in Semiconductor Processing,2010,13(3),221.
26 Hara R, Inoue S, Kaibe H T, et al. Journal of Alloys & Compounds,2003,349(1),297.
27 Qiu P, Xia X, Huang X, et al. Journal of Alloys & Compounds,2014,612(612),365.
28 Liu Y, Gokcen D, Bertocci U, et al. Science,2012,338,1327.
29 El-Genk M S, Saber H H, Caillat T, et al. Energy Conversion & Management,2006,47(2),174.
30 Saber H H, El-Genk M S. Energy Conversion & Management,2007,48(4),1383.
31 Sakamoto J S, Caillat T, Fleurial J P, et al. U.S. patent, US 7480984 B1,2009.
32 Godlewska E, Zawadzka K, Mars K, et al. Oxidation of Metals,2010,74(3-4),205.
33 Zhao D, Zuo M, Wang Z, et al. Applied Surface Science,2014,305(7),86.
34 Zhao D,Wu D,Ning J,Zuo M,et al. Journal of Electronic Materials,2017,46(5),3036.
35 Chen L, Dong H, Li X, et al. 中国专利, CN103146301A,2013.
36 Zawadzka K, Godlewska E, Mars K, et al. Materials & Design,2017,119,65.
37 Park Y S, Thompson T, Kim Y, et al. Journal of Materials Science,2015,50(3),1500.
38 Sakamoto J S, Snyder J G, Calliat T, et al. U.S. patent, US7461512,2008.
39 Dong H, Li X, Tang Y, et al. Journal of Alloys & Compounds,2012,527,247.
40 Dong H, Li X, Huang X, et al. Ceramics International,2013,39(4),4551.
41 Xia X, Huang X, Li X, et al. Journal of Alloys & Compounds,2014,604,94.
42 Zhang Q H, Huang X Y, Bai S Q, et al. Advanced Engineering Mate-rials,2016,18(2),194.
43 Godlewska E, Zawadzka K, Gajerski R, et al. Ceramic Materials,2010,62(4),490.
[1] 张谦. 不同铺层角含孔复合材料板拉伸性能数值模拟[J]. 材料导报, 2019, 33(z1): 145-148.
[2] 李雪换, 底月兰, 王海斗, 李国禄, 董丽虹, 马懿泽. 基于内聚力模型的热障涂层失效行为研究[J]. 材料导报, 2019, 33(9): 1500-1504.
[3] 郭帅, 焦学健, 李丽君, 董抒华, 孙丰山, 单海瑞. 近场动力学方法研究复合材料失效的进展[J]. 材料导报, 2019, 33(5): 826-833.
[4] 王译文, 王海斗, 马国政, 陈书赢, 何鹏飞, 丁述宇. Ti4O7功能陶瓷材料研究与应用现状[J]. 材料导报, 2019, 33(1): 143-151.
[5] 黄展鸿, 黄春芳, 张鉴炜, 江大志, 鞠苏. 声发射技术在纤维增强复合材料损伤检测和破坏过程分析中的应用研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1122-1128.
[6] 杨贵荣, 宋文明, 王建儒, 张玉福, 王富强, 马颖. 添加碳化钨和石墨改善真空熔覆Ni-Co基合金涂层的极化行为[J]. 材料导报, 2018, 32(6): 924-929.
[7] 邓杨芳, 范晓孟, 张根, 吴长波, 钟燕, 何爱杰, 殷小玮. 预氧化Cf/SiC陶瓷基复合材料及其构件的抗疲劳特性研究[J]. 《材料导报》期刊社, 2018, 32(4): 631-635.
[8] 张朝磊, 魏旸, 方文, 苗红生, 巴鑫宇, 刘雅政. 谐波减速器特殊钢材质柔轮的组织和力学性能分析[J]. 材料导报, 2018, 32(16): 2842-2846.
[9] 张朝磊, 魏旸, 方文, 苗红生, 王青海. 非调质钢36MnVS4汽车发动机连杆胀断缺陷分析[J]. 《材料导报》期刊社, 2018, 32(14): 2458-2461.
[10] 刘洋, 何晓聪, 邢保英, 邓聪, 张先炼. 泡沫金属夹层板自冲铆接头的疲劳性能及失效机理[J]. 《材料导报》期刊社, 2018, 32(14): 2431-2436.
[11] 何柏林,金辉,张枝森,谢学涛,丁江灏. SMA490BW钢对接接头高周疲劳性能的机理探究[J]. 《材料导报》期刊社, 2018, 32(12): 2008-2014.
[12] 陈悦,朱锡,朱子旭,李华东. 含预裂缝复合材料缠绕圆柱壳轴压承载特性分析*[J]. 《材料导报》期刊社, 2017, 31(7): 150-154.
[13] 吴艳光,羿庄城,葛震,杜飞鹏,张云飞. 提高聚(3,4-乙撑二氧噻吩)∶聚苯乙烯磺酸电导率的最新研究进展*[J]. 《材料导报》期刊社, 2017, 31(7): 26-31.
[14] 赵伦, 何晓聪, 张先炼, 张龙, 高爱凤. 轻合金自冲铆微动磨损及疲劳性能研究[J]. 《材料导报》期刊社, 2017, 31(6): 72-75.
[15] 肖轶,顾剑锋,张俊喜,杨有利. 纳米CeO2对激光熔覆Fe/Cr3C2复合涂层组织与磨损性能的影响*[J]. 材料导报编辑部, 2017, 31(22): 65-69.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed